Theorem (conjectured in 1929, Oppenheim; proved in 1986, M.) Let Q be an indefinite irrational quadratic form in $n \ge 3$ variables. Then for every E > 0 there exists $x \in \mathbb{Z}^n, x \ne 0$ such that |Q(x)| < E.

Slightly stronger statement: Under the same conditions $Q(\mathbb{Z}^n)$ is dense in \mathbb{R} .

Conjecture. If \hat{Q} is a product of three linearly independent linear forms on \mathbb{R}^3 and $|\hat{Q}(v)| > 0$

inf |Q(v)| > 0 $v \in \mathbb{Z}^3, v \neq 0$ then \hat{Q} is a multiple of a rational form. Theorem (M., 1986). Any Bounded orbit of SO(2,1) in SL(3,1R)/SL(3,1Z) is compact.

Conjecture. Any bounded orbit of $D = \left\{ \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \\ 0 & \lambda_3 \end{pmatrix} \middle| \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}, \lambda_1, \lambda_2, \lambda_3 = 1 \right\}$ in $SL(3,\mathbb{R})/SL(3,\mathbb{Z})$ is compact.

SL(3,R)/SL(3,Z) is isomorphic to $\Omega_3 \stackrel{\text{def}}{=} \{ \text{the space of rinimodular} \}$ lattices in \mathbb{R}^3

Conjecture. Let L be the product of n linear forms on Rⁿ. Suppose that n ≥ 3 and L is not a multiple of a form with integer coefficients. Then

inf L(v) = 0 $v \in \mathbb{Z}^n, v \neq 0$

 $x_1^2 - \lambda x_2^2 = (x_1 - V \lambda x_2)(x_1 + V \lambda x_2)$

Conjecture. Let $n \ge 3$, G = SL(n,R), F = SL(n,R), and let D denote the F = SL(n,R), and let D denote the group of all diagonal matrices in G. Then any bounded orbit of D in G/F is closed.

 $|x| = \min |x - k|$ $k \in \mathbb{Z}$

Lettlewood conjecture (~1930). For any two irrational numbers &, BER

 $\lim_{n\to\infty}\inf n[n\alpha][n\beta]=0.$

 $n(n\alpha-m_1)(n\beta-m_2)=\hat{Q}(n,m_1,m_2)$

{x} the fractional part of x.

lim inf $n \{n \alpha \} \{n \beta \} = 0$? $n \to \infty$ not true $\alpha = \sqrt{2}$, $\beta = 2 - \sqrt{2}$

 ν a positive continuous function on the sphere

$$\{v \in \mathbf{R}^n \mid ||v|| = 1\}$$

$$\Omega = \{ v \in \mathbf{R}^n \mid ||v|| < \nu(v/||v||) \}$$

 $T\Omega$ the dilate of Ω by T

$$N_{Q,\Omega}(a,b,T) \stackrel{\text{def}}{=} \#\{x \in \mathbf{Z}^n \mid x \in T\Omega \text{ and } a < Q(x) < b\}$$

$$V_{Q,\Omega}(a,b,T) \stackrel{\text{def}}{=} \text{Vol}\{x \in \mathbb{R} \mid x \in T\Omega \text{ and } a < Q(x) < b\}$$

$$V_{Q,\Omega}(a,b,T) \sim \lambda_{Q,\Omega}(b-a)T^{n-2}$$

where

$$\lambda_{Q,\Omega} = \int_{L\cap\Omega} \frac{dA}{\|\nabla Q\|},$$

L is the light cone Q = 0 and dA is the area element on L.

Let $\mathcal{O}(p,q)$ denote the space of quadratic forms of signature (p,q) and discriminant ± 1 .

Theorem. (Dani, Margulis 1993) (i) Let $p \geq 2$ and $q \geq 1$. Then for any irrational $Q \in \mathcal{O}(p,q)$ and any interval (a,b)

$$\liminf_{T \to \infty} \frac{N_{Q,\Omega}(a,b,T)}{V_{Q,\Omega}(a,b,T)} \ge 1.$$

Moreover, this bound is uniform over compact sets of forms: if K is a compact subset of $\mathcal{O}(p,q)$ which consists of irrational forms, then

$$\liminf_{T \to \infty} \inf_{Q \in \mathcal{K}} \frac{N_{Q,\Omega}(a,b,T)}{V_{Q,\Omega}(a,b,T)} \ge 1.$$

(ii) If p > 0, q > 0 and $n = p + q \ge 5$, then for any $\varepsilon > 0$ and any compact subset \mathcal{K} of $\mathcal{O}(p,q)$ there exists $c = c(\varepsilon, \mathcal{K}) > 0$ such that for all $Q \in \mathcal{K}$ and T > 0

$$N_{Q,\Omega}(\underline{\alpha}, \underline{k}, T) \geq cV_{Q,\Omega}(\underline{\alpha}, \underline{k}, T).$$

Theorem. (Eskin, Margulis, Mozes 1998) If $p \geq 3$, $q \geq 1$ and n = p + q then, as $T \to \infty$

$$N_{Q,\Omega}(a,b,T) \sim \lambda_{Q,\Omega}(b-a)T^{n-2}$$

for any irrational form $Q \in \mathcal{O}(p,q)$.

Theorem. (Eskin, Margulis, Mozes 1998) Let Ω be the unit ball, and let q=1 or 2. Then for every $\varepsilon > 0$ and every interval (a,b) there exists an irrational form $Q \in \mathcal{O}(2,q)$ and a constant c>0 such that for an infinite sequence $T_j \to \infty$

$$N_{Q,\Omega}(a,b,T_j) > cT_j^q(\log T_j)^{1-\varepsilon}.$$

Theorem. (Eskin, Margulis, Mozes 1998) Let K be a compact subset of $\mathcal{O}(p,q)$ and n=p+q. Then, if $p \geq 3$ and $q \geq 1$ there exists a positive constant $c = c(K, a, b, \Omega)$ such that for any $Q \in K$ and all T > 1 $N_{Q,\Omega}(a,b,T) < cT^{n-2}$.

If p=2 and q=1 or q=2, then there exists a constant $c=c(\mathcal{K},a,b,\Omega)$ such that for any $Q\in\mathcal{K}$ and all T>2 $N_{Q,\Omega}(a,b,T)< cT^{n-2}\log\ T.$

We say that a quadratic form $Q \in \mathcal{O}(2,2)$ is extremely well approximable by split rational forms, to be abbreviated as EWAS, if for any N > 0 there exist a split integral form Q' and a real number $\lambda > 2$ such that $\|\lambda Q - Q'\| \le \lambda^{-N}$. If the ratio of two nonzero coefficients of Q is Diophantine then Q is not EWAS.

 $x \in \mathbb{R}$ is callled *Diophantine* if there exists N > 0 such that $|qx - p| > q^{-N}$ for any integers p and q.

Theorem. (Eskin, Margulis, Mozes) The asymptotic formula

$$N_{Q,\Omega}(a,b,T) \sim \lambda_{Q,\Omega}(b-a)T^{n-2}$$

holds if $Q \in \mathcal{O}(2,2)$ is not EWAS and $0 \notin (a,b)$.

Let Δ be a lattice in \mathbb{R}^2 and let $M = \mathbb{R}^2/\Delta$ denote the associated flat torus. The eigenvalues of the Laplacian on M are the values of the binary quadratic form $q(m,n) = 4\pi^2 ||mv_1 + nv_2||^2$, where $\{v_1, v_2\}$ is a **Z**-basis for the dual lattice Δ^* . We label these eigenvalues (with multiplicity) by

$$0 = \lambda_0(M) < \lambda_1(M) \le \lambda_2(M) \dots$$

$$|\{j \mid \lambda_j(M) \le T\}| \sim c_M T, c_M = (\text{area } M)/4\pi$$

$$R_M(a, b, T) \stackrel{\text{def}}{=}$$

$$|\{(j,k)|\lambda_j(M) \le T, \lambda_k(M) \le T, j \ne k, a \le \lambda_j(M) - \lambda_k(M) \le b\}$$

$$T$$

Theorem. (Eskin, Margulis, Mozes 2001) Let M be a flat 2-torus rescaled so that one of the coefficients in the associated binary quadratic form is 1. Let A_1, A_2 denote the two other coefficients of q. Suppose that there exists N > 0 such that for all triples of integers (p_1, p_2, q)

$$\max_{i=1,2} |A_i - \frac{p_i}{q}| > \frac{1}{q^n}.$$

Then for any interval (a, b) which does not contain 0,

(*)
$$\lim_{t \to \infty} R_M(a, b, T) = c_M^2(b - a)$$

In particular, if one of the A_i is Diophantine, then (*) holds, and therefore the set of $(A_1, A_2) \subset \mathbb{R}^2$ for which (*) does not hold has zero Hausdorff dimension.

$$E_s = \{ x \in \mathbf{R}^d \mid Q(x) \le s \}$$

vol B denotes the Lebesgue measure of B vol_{**Z**} B denotes the number of points in $B \cap \mathbf{Z}^d$

$$\Delta(r,a) \stackrel{\text{def}}{=} \left| \begin{array}{c} \frac{\text{vol}_{\mathbf{Z}}(rE_1+a)-\text{vol } rE_1}{\text{vol } rE_1} \end{array} \right|$$

Theorem. (Götze) Assume that Q is positive definite and $d \geq 5$. Then

$$\sup_{a \in \mathbf{R}^d} \Delta(r, a) = O(r^{-2})$$

as $r \to \infty$.

Theorem. (Götze) Assume that Q is positive definite and $d \geq 5$. Then

$$\sup_{a \in \mathbf{R}^d} \Delta(r, a) = o(r^{-2})$$

iff Q is irrational.

For $d \geq 9$ both theorems had been proved earlier by Bentkus and Götze (1999).

Corollary. For η let E_s^n denote the elliptic shell $E_{s+\eta} \backslash E_s$. Then for any fixed $\eta > 0$

$$\sup_{a \in \mathbf{R}^d} \frac{\operatorname{vol}_{\mathbf{Z}}(E_{r^2}^{\eta} + a)}{\operatorname{vol} E_{r^2}^{\eta}} = 1 + o(1),$$

as $r \to \infty$ holds uniformly in the center a provided that $d \geq 5$ and Q is irrational and positive definite.

Proves Davenport-Lewis conjecture about gaps between values of a positive definite form at integral points.

Let $0 \le v_1 \le v_2 < \dots$ denote an enumeration of the values of Q(m-a), $m \in \mathbb{Z}^d$, in increasing order. Then

$$\lim_{n\to\infty}(v_{n+1}-v_n)=0.$$