Liquidity Risk with Coherent Risk Measures

Hyejin Ku

Deparment of Math & Stats York University

To appear, Applied Mathematical Finance

Outline

- Describe financial risk and coherent risk measures (representation by "scenarios" or probabilities)
- Incorporate liquidity risk into risk measurement (definition of "acceptable" portfolio)
- Consider an example of modeling liquidity (liquidity based restrictions)
- Consider a liquidation strategy by (finite) random time

Financial Risk

- Possible Outcomes $\Omega = \{\omega_1, \omega_2, ..., \omega_K\}$
- Random future value $X : \Omega \to \mathbb{R}$ (normalized with respect to a risk-free asset)
- A set of "acceptable" future values X
- A risk measure is a mapping ρ from random variables to real numbers.

Risk measures and acceptance sets

 $\rho(X)$ specifies how much capital is required to make a position acceptable,

i.e. $\rho(X) \leq 0 \Rightarrow X$ is acceptable

The acceptance set associated with a risk measure ρ is

 $\mathcal{A}_{\rho} = \{ X | \, \rho(X) \le \mathsf{0} \}.$

Value at Risk

VaR, Value at Risk, is a commonly used risk measure.

$$VaR_{\alpha}(X) = -\inf\{m | P[X \le m] > \alpha\}$$

Shortcomings: it controls the frequency of failures but not their economic consequences

VaR is not subadditive: it could happen that

 $VaR_{\alpha}(X+Y) > VaR_{\alpha}(X) + VaR_{\alpha}(Y)$

Coherent measures of risk

A risk measure ρ is called **coherent** if it satisfies the following axioms

1. Subadditivity

$$\rho(X+Y) \le \rho(X) + \rho(Y)$$

2. Positive homogeneity If $\lambda \ge 0$

$$\rho(\lambda X) = \lambda \rho(X)$$

3. **Translation invariance** For all $m \in \mathbb{R}$

$$\rho(X+m) = \rho(X) - m$$

4. Monotonicity

$$X \le Y \Rightarrow \rho(Y) \le \rho(X)$$

A risk measure ρ is called **convex** if it satisfies the following axioms

1. Convexity For $0 \le \lambda \le 1$ $\rho(\lambda X + (1 - \lambda)Y) \le \lambda \rho(X) + (1 - \lambda)\rho(Y)$

2. Translation invariance For all $m \in \mathbb{R}$

$$\rho(X+m) = \rho(X) - m$$

3. Monotonicity

$$X \le Y \Rightarrow \rho(Y) \le \rho(X)$$

The associated acceptance set \mathcal{A} is convex, monotone and closed.

Representation of risk measures

If measure of risk ρ is convex, then there exists a set S of probability measures P^i on Ω and constants f^i such that

$$\rho(X) = -\inf_{P^i \in \mathcal{S}} \left\{ E_{P^i}[X] - f^i \right\}.$$

For coherent measures of risk, the constants are zero.

The acceptance set is

$$\mathcal{A}_{\rho} = \{ X | E_{P^i}[X] \ge f^i \text{ for all } i \}.$$

Choose a set of scenarios and corresponding risk limits. Let a financial position X be "acceptable" if

$$E_{P^i}[X] \ge f^i$$

for every *i*.

The resulting risk measure is coherent/convex.

Q. Suppose that a trader borrows a million and uses up for the stock of a single company.

– Is it correct to value the holdings of this trader at the present per-share price?

– Would the position of this trader be acceptable?

<u>Model</u>

On a probability space (Ω, \mathcal{F}, P) with a filtration $\{\mathcal{F}_t\}_{t\geq 0}$

- a risk-free asset
- \bullet traded risky assets S^1, S^2, \cdots, S^N
- trading strategy $\pi_t = (\pi_t^0, \pi_t^1, \cdots, \pi_t^N)$ where π_t^0 is the number of units of the riskfree asset (the amount of cash holding) and π_t^n is the number of shares of asset $S^n (n = 1, ..., N)$ held at each time t

Consider a set of test measures $\{P^i, i \in I\}$ and risk limits $f^i \in \mathbb{R}$ where each P^i is absolutely continuous with respect to P.

We assume for "admissible" trading strategies (subject to liquidity based restrictions)

- no additional cashflows is generated
- "mark-to-market" value is bounded below

Acceptable portfolio

Definition A portfolio X is *acceptable* if there exist an "admissible" trading strategy π_t and a date T for which X can be decomposed (by trading) into a cash-only position and a positive portfolio by date T:

(i)
$$\pi_T^n = 0$$
 for all $1 \le n \le N$

where π_T^n denotes the number of shares of asset S^n held at date T, and

(ii)

$$E_{P^i}[e^{-rT}\pi_T^0] \ge f^i$$

for every $i \in I$.

A positive portfolio means that it entails only nonnegative cashflows in the future.

The acceptance set

The set ${\mathcal A}$ of all acceptable portfolios is

• convex

i.e., if X is acceptable and Y is acceptable, then so is $\lambda X + (1 - \lambda)Y$ for $0 \le \lambda \le 1$.

monotone

i.e., if X is acceptable and $X \leq Y$ (Y - X produces nonnegative cash flows), then Y is acceptable.

not necessarily positive homogeneous
i.e., X is acceptable but 2X might not be acceptable.

Proof of convexity

Since X is acceptable, there exists an admissible trading strategy ϕ_t for X which satisfies $\phi_{T_1}^n = 0$ ($1 \le n \le N$) and $e^{-rT_1}\phi_{T_1}^0$ is acceptable for some T_1 .

Since Y is also acceptable, there exist an admissible trading strategy ψ_t and date T_2 for Y.

Set
$$T = \max\{T_1, T_2\}$$
 (assume $T = T_1$). Let

$$\pi_t = \lambda \phi_t + (1 - \lambda) \psi_{t \wedge T_2}$$

Then, for this strategy π_t the portfolio $\lambda X + (1 - \lambda)Y$ is decomposed into a cash-only position and a positive portfolio by date T, and the discounted value of cash-only part is

$$\lambda e^{-rT_1} \phi_{T_1}^0 + (1-\lambda) e^{-rT_1} e^{r(T_1 - T_2)} \psi_{T_2}^0$$

which is an acceptable random variable.

Modeling liquidity

Consider a market consisting of

- a risk-free asset (the interest rate r)
- a risky asset following a geometric Brownian motion

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

the actual price traded in the market

$$P_t^{\pm} = S_t \pm \frac{\lambda}{2} S_t = (1 \pm \frac{\lambda}{2}) S_t$$

where P^+ , P^- represent the prices for buyers and for sellers respectively, and λ indicates the bid-ask spread

• a set of scenarios and risk limits $\{P^i, i \in I\}$ and $\{f^i, i \in I\}$

Admissible trading strategies

Define trading strategies (π_t^0, π_t^1) to be all $\{\mathcal{F}_t\}$ -adapted processes with left continuous paths that have right limits.

 π_t^0 denotes the amount held in cash and π_t^1 the number of shares of asset S held at time t.

Assume the firm cannot "liquidate" too fast:

Definition A trading strategy π_t is *admissible* if it satisfies

$$|\pi_{t_1}^1 - \pi_{t_2}^1| \le \epsilon |t_1 - t_2|$$

and keeps the wealth ("mark-to-market" value) bounded below.

Then

$$\pi_t^1 = \Pi_t^+ - \Pi_t^-$$

where Π_t^+ is interpreted as the cumulative number of shares of asset S bought and Π_t^- as the cumulative number sold until time t.

$$d\pi_t^0 = r\pi_t^0 dt - d(\Pi_t^+) P_t^+ + d(\Pi_t^-) P_t^-$$

= $r\pi_t^0 dt - (d\pi_t^1) S_t - \frac{\lambda}{2} (d(\Pi_t^+) + d(\Pi_t^-)) S_t$

Definition A trading strategy $\pi_t = (\pi_t^0, \pi_t^1)$ is said to be *self-financing* if it satisfies

$$d(\pi_t^0 + \pi_t^1 S_t) = r\pi_t^0 dt + \pi_t^1 dS_t - \frac{\lambda}{2} (d(\Pi_t^+) + d(\Pi_t^-))S_t$$

The wealth process

The wealth ("mark-to-market" value) process W is written as

$$dW(t) = r\pi_t^0 dt + \pi_t^1 dS_t - \frac{\lambda}{2} (d(\Pi_t^+) + d(\Pi_t^-))S_t$$

= $r\{W(t) - \pi_t^1 S_t\} dt + \pi_t^1 dS_t - \frac{\lambda}{2} (d(\Pi_t^+) + d(\Pi_t^-))S_t$

Lemma 1 The discounted wealth process is a supermartingale under any $Q \in Q$

where Q is the set of probability measures absolutely continuous with respect to P, under which the (discounted) asset price process is a local martingale. Assume $Q \cap \{P^i, i \in I\} \neq \emptyset$.

<u>Proof</u>

$$d(e^{-rt}W(t)) = e^{-rt} \{ -r\pi_t^1 S_t dt + \pi_t^1 dS_t \\ -\frac{\lambda}{2} (d(\Pi_t^+) + d(\Pi_t^-)) S_t \}$$
$$e^{-rt}W(t) = W(0) + \int_0^t \pi_u^1 d(e^{-ru}S_u)$$

$$e^{-rt}W(t) = W(0) + \int_0^{t} \pi_u^1 d(e^{-ru}S_u) \\ -\frac{\lambda}{2} \int_0^t e^{-ru}S_u(d(\Pi_t^+) + d(\Pi_t^-))$$

The stochastic integral (with respect to $e^{-rt}S_t$) is a local martingale.

A continuous local martingale which is bounded below is a supermartingale.

The last term (without the minus sign) is nonnegative and nondecreasing. **Theorem 2** For any fixed date T, there is a constant K such that:

if the initial "mark-to-market" value of a portfolio is less than K, then the portfolio cannot be decomposed into an acceptable cash-only position and a positive portfolio by time T.

<u>Proof</u>

Suppose a portfolio X is acceptable. Then there must exist an admissible trading strategy π_t for which $\pi_T^1 = 0$ and $e^{-rT} \pi_T^0$ satisfies

$$E_{P^i}[e^{-rT}\pi_T^0] \ge f^i$$

for every P^i .

On the other hand, if P^i belongs to \mathcal{Q} ,

$$E_{P^i}[e^{-rT}\pi_T^0] \leq E_{P^i}[e^{-rT}W(T)]$$

$$\leq W(0)$$

Let $K = \max\{f^i : P^i \in \mathcal{Q}\}.$

If the initial "mark-to-market" value W(0) is less than K, then the portfolio cannot be acceptable.

Liquidation by (finite) random time

Assume that $\mu > \frac{\sigma^2}{2}$.(r = 0) Assume $S_0 = 1$ and initial shares of stock held $\pi_0^1 = 1$.

• Step 1. Hold the stock until the stock holdings are worth $L(\gg 1)$

Set

$$\sigma_1 = \inf\{t : S_t = L\}$$

= $\inf\{t : (\mu - \frac{\sigma^2}{2})t + \sigma B_t = \ln L\}$
< ∞

$$E_P[e^{-\theta\sigma_1}] = \exp\{-\frac{\ln L}{\sigma^2}(\sqrt{(\mu - \frac{\sigma^2}{2})^2 + 2\sigma^2\theta} - (\mu - \frac{\sigma^2}{2})\}$$

for any fixed $\theta > 0$.

$$E_P[\sigma_1] = \frac{1}{\mu - \frac{\sigma^2}{2}} \ln L.$$

• Step 2. Sell the stock at rate ϵ until the stock holdings are worth 1

Set

$$\tau_{1} = \inf\{t \ge \sigma_{1} : \pi_{t}^{1}S_{t} = 1\} \\ = \inf\{t \ge \sigma_{1} : (1 - \epsilon(t - \sigma_{1}))S_{t} = 1\}$$

The change in the value of cash holding

$$d\pi_t^0 = -d(\Pi_t^+)P_t^+ + d(\Pi_t^-)P_t^- \\ = \epsilon(1-\frac{\lambda}{2})S_t$$

for $\sigma_1 < t < \tau_1$.

Thus the total amount of changes in the value of cash holding

$$Y_1 = \int_{\sigma_1}^{\tau_1} d\pi_t^0 = \epsilon (1 - \frac{\lambda}{2}) \int_{\sigma_1}^{\tau_1} S_t dt$$

23

• Step 3. Wait until the stock holdings are worth L

For $t \geq \tau_1$

$$S_t = S_{\tau_1} \exp\{(\mu - \frac{\sigma^2}{2})(t - \tau_1) + \sigma(B_t - B_{\tau_1})\}$$

By the strong Markov property of Brownian motion, the distribution of $\frac{S_t}{S_{\tau_1}}$ (conditioned on \mathcal{F}_{τ_1}) is the same as the distribution of S_u , where $u = t - \tau_1$.

Let

$$\begin{aligned} \sigma_2 &= \inf\{t \ge \tau_1 : \pi_{\tau_1}^1 S_t = L\} \\ &= \inf\{t \ge \tau_1 : \frac{S_t}{S_{\tau_1}} = L\} \\ &< \infty \end{aligned}$$

since $\pi_{\tau_1}^1 S_{\tau_1} = 1.$

• Step 4. Sell the stock at rate $\frac{\epsilon}{S_{\tau_1}}$ until the stock holdings are worth 1

Set

$$\tau_{2} = \inf\{t \ge \sigma_{2} : \pi_{t}^{1}S_{t} = 1\} \\ = \inf\{t \ge \sigma_{2} : (\pi_{\tau_{1}}^{1} - \frac{\epsilon}{S_{\tau_{1}}}(t - \sigma_{2}))S_{t} = 1\}$$

Then, for $\sigma_2 < t < \tau_2$

$$d\pi_t^0 = -d(\Pi_t^+)P_t^+ + d(\Pi_t^-)P_t^-$$
$$= \frac{\epsilon}{S_{\tau_1}}(1-\frac{\lambda}{2})S_t$$

Thus, the amount transferred into cash holdings

$$Y_{2} = \int_{\sigma_{2}}^{\tau_{2}} d\pi_{t}^{0} = \epsilon (1 - \frac{\lambda}{2}) \int_{\sigma_{2}}^{\tau_{2}} \frac{S_{t}}{S_{\tau_{1}}} dt$$

• Step 5. Repeat to produce Y_3, Y_4, \cdots

Assume that $\mu > \frac{\sigma^2}{2}$.(r = 0) Let X be a portfolio whose initial shares of stock is 1.

<u>Theorem 3</u> There exist an admissible trading strategy and a (finite) stopping time τ^* such that X is decomposed into a cash-only position and a positive portfolio by date τ^* , and

$$E_{P^i}[\pi_{\tau^*}^0] \ge f^i$$

for all $i \in I$.

<u>Proof</u>

Consider

$$Y_{1} = \epsilon (1 - \frac{\lambda}{2}) \int_{\sigma_{1}}^{\tau_{1}} S_{t} dt, \ Y_{2} = \epsilon (1 - \frac{\lambda}{2}) \int_{\sigma_{2}}^{\tau_{2}} \frac{S_{t}}{S_{\tau_{1}}} dt, \dots$$

By the law of large numbers

$$Y_1 + Y_2 + \cdots \to \infty$$

almost surely under P.

Let

$$Z_t = \pi_0^0 + \sum_{\tau_m \le t} Y_m$$

Then $Z_t \leq \pi_t^0$ and $Z_t \to \infty$ a.s. under P.

Let

$$\tau^* = \inf\{t : Z_t \ge 2\bar{f}\}$$

where $\overline{f} = \max\{f^i, i \in I\}$. Then $\tau^* < \infty$ a.s. and

$$P\{\omega : Z_{\tau^*} < \bar{f}\} = 0$$

27

Proof continued

Since each P^i is locally absolutely continuous with respect to P, there exists an increasing sequence $\{T_n\}$ of stopping times such that: (i) $P^i\{\lim T_n = \infty\} = 1$ (ii) $P^i|_{\mathcal{F}_{T_n}}$ is absolutely continuous with respect to $P|_{\mathcal{F}_{T_n}}$ for all n.

For the localizing sequence $\{T_n\}$ (depending on P^i)

$$P^{i}\{Z_{\tau^{*}} < \bar{f}\} = \lim_{n \to \infty} P^{i}\{\{Z_{\tau^{*}} < \bar{f}\} \cap \{T_{n} \ge \tau^{*}\}\}$$

= 0

Then

$$E_{P^i}[\pi^0_{\tau^*}] \ge E_{P^i}[Z_{\tau^*}] \ge \bar{f} \ge f^i$$

for every $i \in I$.

Summary

- Liquidity risk is incorporated into risk measurement.
- A notion of acceptable portfolio is established.
- An example of modeling liquidity is presented.
- The requirement of finite fixed time for liquidation is necessary in the regulation of liquidity risk.

References

H. Ku (2005): "Liquidity Risk with Coherent Risk Measures", *To appear in Applied Mathematical Finance*

P. Artzner, F. Delbaen, J.M. Eber and D. Heath (1999): "Coherent Measures of Risk", *Mathematical Finance*

P. Artzner, F. Delbaen, J.M. Eber, D. Heath and H. Ku (2002): "Coherent Multiperiod Risk Measurement", *To appear in Annals of Operations Research*

H. Föllmer and A. Schied (2002): "Convex Measures of Risk and Trading Constraints", *Finance and Stochastics* 6, 429-447

K. Larsen, T. Pirvu, S. Shreve and R. Tütüncü (2003): Satisfying Convex Risk Limits by Trading, Manuscript, Carnegie Mellon University