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1. Introduction

1.1. Motivating Example

ACTG 359 prospective, randomized, 2 × 3 factorial,
multicentered (Gulick et al, 2000 and 2002)

• study population: HIV-infected with indinavir experience,
HIV-RNA ≥ 2, 000 copies/ml

• study regimens (“salvage therapies"): 6 combinations of
SQV with RTV or NFV together with DLV, ADV, or both

• response of primary interest: viral load (HIV-RNA) overtime

ACTG359 used its Observed Sample Means at different time points
to study the trend of HIV-RNA overtime
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In recent AIDS treatment clinical trials,
• primary response – a marker overtime:

e.g. HIV-RNA copies or CD4 counts (virologic/immunologic
measures);
e.g. weight, height, or IQ (age-adjusted) for children

• missing data
• robust analysis methods are desirable:

a rapidly evolving area

Similar situations in many other medical studies.
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For repeated measures with missing in general,

Observed Sample Mean is commonly used in practice in a
descriptive way.

• how does Observed Sample Mean perform?
• any alternatives?
• what can we learn from survival analysis?
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Recall

• Marginal analysis in counting process setting: Lawless
(1995), Lawless and Nadeau (1995)

followed by e.g. Cook, Lawless and Nadeau (1996), Lin,
Wei, Yang and Ying (2000), Hu, Sun and Wei (2003)

• Longitudinal analysis: GEE

recent work, e.g. Robins and Rotnitzky (1995), Lin and
Carroll (2000, 2001), Wang (2003).
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1.2. Framework

• Response: X(t), t ∈ T

• Observation Indicator: δ(t), t ∈ T,
with δ(t) = 1 if X(t) observed; = 0 if not.

• Covariate: Z(t), t ∈ T

Goals:

• to estimate µ(t) = E
{

X(t)
}

, t ∈ T.

• to estimate µZ(t) = E
{

X(t)
∣

∣Z(s) : s ≤ t
}

, t ∈ T

– p. 10
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Illustrative Examples for the Framework:

• Repeated Measures with Missing
X(t): the measure of an quantity at time t

δ(t) = I
(

t = ξ1, . . . , ξK

)

, ξj and K rvs
µ(t): the average over time of the quantity in the population

• Right-censored Survival times
X(t) = I(T ≤ t): the indicator process of death
δ(t) = I

(

t ≤ C), C a censoring time
µ(t): the cdf of T

• Panel Counts
X(t): a counting process
δ(t) = I

(

t = ξ1, . . . , ξK

)

, ξj and K rvs
µ(t): the cumulative intensity of X if X is Poisson

– p. 12
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2. Estimation in Nonparametric Models

(Hu and Lagakos, 2004; Hu, Lagakos, and Lockhart, 2005)

Goal:
To estimate µ(t) = E

{

X(t)
}

from iid
{

Xi, δi : i = 1, . . . n
}

nonparametrically

Assumptions:
• X(·) and δ(·) independent
• Periodic Observations: all times of interest

T =
{

t1, t2, . . . , tM
}

, 0 < M < ∞; E
{

δ(t)
}

> 0 for t ∈ T

the Assumptions ?
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2.1. Estimation Procedures

2.1.1. Observed sample mean (OSM)

For t ∈ T, a natural estimator and commonly used in a
descriptive way:

µ̄(t) =

∑n
i=1 Xi(t)δi(t)
∑n

i=1 δi(t)
.

• Unbiased
• Consistent and Asymptotically Gaussian

– p. 16



• A weighted least squares estimator: it minimizes

n
∑

i=1

∑

t∈T

δi(t)
{

Xi(t) − µ(t)
}2

,

i.e., it’s the solution of

n
∑

i=1

Φi

{

Xi − µ
}

= 0

with Xi = (Xi(t1), . . . ,Xi(tM ))
′

, µ = (µ(t1), . . . , µ(tM ))
′

, and
Φi = diag(δi(t) : t ∈ T).

How does it perform numerically?

– p. 17



Simulation

Generate independent
{

Xi(t) : t ∈ T = {0, 1, . . . , 19}
}

,

i = 1, . . . , 100: Xi(t) = eQi(t) + eQi(t−1), Q ∼ MN(ν,Σ), AR with
ρ = 0.8;
Generate random missing with obs rate of 20% for t ∈ T.

time

me
an

 es
tim

ate

0 5 10 15

0
10

20
30

40

Full Data
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Recall “Reduced Sample Estimator” from right-censored survival
times (Kaplan and Meier, 1958):

µ̄(t) =

∑n
i=1 Xi(t)δi(t)
∑n

i=1 δi(t)
, t ∈ T

Compared to Kaplan-Meier estimator for S(t)?

How about to consider

µ(t) = [µ(t1) − µ(t0)] + [µ(t2) − µ(t1)] + . . . + [µ(t) − µ(tl)],

and have µ̃(t) =
∑

tj≤t ν̃j ???

– p. 20
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2.1.2. Cumulative observed increments (COI)

Consider to minimize, wrt νj = µ(tj) − µ(tj−1),

n
∑

i=1

∑

t∈T

δi(t)
{

∆Xi(t) − ∆µi(t)
}2

,

∆Xi(t) = Xi(t) − Xi(si(t)), ∆µi(t) =
∑

si(t)<tj≤t νj . The
weighted least squares estimator:

µ̃(t) =
∑

tj∈T:tj≤t

ν̃j , t ∈ T.

• Unbiased
• Consistent, Asymptotically Gaussian
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• Nelson-Aalen estimator from right-censored Poisson counts,
Lawless-Nadeau for the mean of a counting process:

µ̃(t) =
n

∑

i=1

∫ t

0

δi(u)
∑n

j=1 δj(u)
dXi(u), t > 0.

How does it perform numerically? Simulation (cont’d)

– p. 24
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Recall
• µ̄(·) (OSM) minimizes

n
∑

i=1

{

ΦiXi−Φiµ
}′{

ΦiXi−Φiµ
}

=

n
∑

i=1

{

Xi−µ
}′

Φ
′

iΦi

{

Xi−µ
}

;

• µ̃(·) (COI) minimizes

n
∑

i=1

{

Xi − µ
}′

Φ
′

iΩ
′

iΩiΦi

{

Xi − µ
}

,

ΩiXi = (δi(t)∆Xi(t), t ∈ T)
′

.
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How about to minimize (Wi symmetric weight)

n
∑

i=1

{

Xi − µ
}′

Φ
′

iWiΦi

{

Xi − µ
}

?

or, to consider the estimation equation (GEE type)

n
∑

i=1

WiΦi

{

Xi − µ
}

= 0?

What Wi to use?
• the inverse of V ar(ΦiXi)?

• COI: Wi = Ω
′

iΩi.

• What else?
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2.1.3. Projection of Nelson-Aalen estimator (PNA)

Recall Nelson-Aalen estimator, the solution of the EE based on
right-censored data:

n
∑

i=1

Yi(t)
{

[

Xi(t) − Xi(s(t))
]

− ∆µ(t)
}

= 0, t ∈ T,

∆µ(t) = µ(t) − µ(s(t)) = ν(t) and Yi(t) = I(t ≤ Ci).

For the current situation, to consider for t ∈ T

n
∑

i=1

Yi(t)
{

E
[

Xi(t)−Xi(s(t))
∣

∣Xi(u) : δi(u) = 1, u ∈ T
]

−∆µ(t)
}

= 0.

– p. 29
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The EE gives, for t ∈ T,

µ(t) =

∑

v∈T:v≤t

n
∑

i=1

Yi(v)
∑n

j=1 Yj(v)
E

[

Xi(v) − Xi(s(v))
∣

∣Xi(u) :
δi(u) = 1,

u ∈ T

]

.

How to get E
[

Xi(t) − Xi(s(t))
∣

∣Xi(u) : δi(u) = 1, u ∈ T
]

?
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Denote ∆∗Xi(t) = Xi(s
∗
i (t)) − Xi(si(t)).

• In survival setting,

E
[

Xi(t) − Xi(s(t))
∣

∣Xi(u) : δi(u) = 1, u ∈ T
]

=

{

0 if ∆∗Xi(t) = 0
∆µ(t)

∆∗µi(t)
if ∆∗Xi(t) = 1

=
∆µ(t)

∆∗µi(t)
∆∗Xi(t)

• For Poisson counts,

E
[

Xi(t)−Xi(s(t))
∣

∣Xi(u) : δi(u) = 1, u ∈ T
]

=
∆µ(t)

∆∗µi(t)
∆∗Xi(t).

• In general, E
[

Xi(t) − Xi(s(t))
∣

∣Xi(u) : δi(u) = 1, u ∈ T
]

and

∆∗Xi(t)
∆µ(t)

∆∗µi(t)
have the same expectation ∆µ(t),

conditional on the observation.

– p. 32
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Recall the projection of NA estimator: for t ∈ T,

µ(t) =

∑

v∈T:v≤t

n
∑

i=1

Yi(v)
∑n

j=1 Yj(v)
E

[

Xi(v) − Xi(s(v))
∣

∣Xi(u) :
δi(u) = 1,

u ∈ T

]

.

Thus

µ(t) =
∑

v∈T:v≤t

n
∑

i=1

Yi(v)
∑n

j=1 Yj(v)
∆∗Xi(v)

∆µ(v)

∆∗µi(v)
, t ∈ T.

Its solution (by an iterative algorithm) is µ̂(·).
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Estimator µ̂(·),

• self-consistent
• it uses Wi = Ω

′

iΣ
−1
i Ωi in the GEE type EE:

Σi = diag(Ωiµ : t ∈ T), it’s V ar(ΩiXi) when X(·) is Poisson.

• the same as NMLE of µ(·) from panel counts under Poisson
assumption, given by Wellner and Zhang (2000)

• consistent and asymptotically Gaussian
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How does it perform numerically? Simulation (cont’d)
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– p. 39



How does it perform numerically? Simulation (cont’d)

Based on 100 repetitions: the sample means?
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How does it perform numerically? Simulation (cont’d)

Based on 100 repetitions: the sample mean square erros?
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2.2. Estimation for Monotone Mean

When µ(·) is monotone?

• In survival setting, µ(·) = F (·)

• In counting process setting, µ(·) = Λ(·)

• Xi(·) as height overtime, or IQ (age adjusted) overtime of
HIV children

Note
• µ̄(·) and µ̃(·) not necessarily monotone

• µ̂(·) is monotone, when X(·) is monotone
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Consider to minimize wrt µ(·)

n
∑

i=1

{

Xi − µ
}′

Φ
′

iWiΦi

{

Xi − µ
}

under the monotone constraint.

• if use OSM weight, =⇒ µ̄∗(·), the isotonic regression of µ̄(·)
with weights {M(t) : the num of obs at t ∈ T}
the same as the estimator given by Sun and Kalbfleisch
(1995), called the NPMLE by Wellner and Zhang (2000)
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Consider to minimize wrt µ(·)

n
∑

i=1

{

Xi − µ
}′

Φ
′

iWiΦi

{

Xi − µ
}

under the monotone constraint.

• if use COI weight, =⇒ µ̃∗(·), obtained by the iterative convex
minorant (ICM) algorithm
slightly different from the isotonic regression of µ̃(·) with
weights {M(·)}
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Consider to minimize wrt µ(·)

n
∑

i=1

{

Xi − µ
}′

Φ
′

iWiΦi

{

Xi − µ
}

under the monotone constraint.

• if use PNA weight, =⇒ µ̂∗(·), obtained by the iterative
convex minorant (ICM) algorithm
slightly different from the PNA µ̂(·), likely more efficient than
µ̂(·)
to improve µ̂(·) in counting process setting?
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Simulation (cont’d)
Based on 100 repetitions: the OSM estimators µ̄ and µ̄∗
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Simulation (cont’d)
Based on 100 repetitions: the COI estimators µ̃ and µ̃∗
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Simulation (cont’d)
Based on 100 repetitions: the PNA estimators µ̂ and µ̂∗
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3. Estimation in Semiparametric Models

(Hu, Jin and Lagakos, 2005)

Goal:
To estimate µZ(t) = E

{

X(t)
∣

∣Z(s), s ≤ t
}

from iid
{

Xi, δi : i = 1, . . . n
}

,

µZ(t) = G(h(·), β;Z(·))

Assumptions:
• X(·) and δ(·) independent
• Periodic Observation: all times of interest

T =
{

t1, t2, . . . , tM
}

, 0 < M < ∞; E
{

δ(t)
}

> 0 for t ∈ T
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3.1. Semiparametric Transformation Models

Suppose µZ(t) follows, with either h(·) or g(·) unknown,

g(µZ(t)) = h(t) + βZ(t).

Illustrative Examples for the Models:

• Cox’s regression models:
◦ in survival setting, Cox’s proportional hazards model

(Cox, 1972)

µZ(t) = S0(t)
exp{βZ(t)};

◦ in counting process setting, conditional cumulative
intensity (c.f. Andersen, Borgan, Gill and Keiding, 1991)

µZ(t) = Λ0(t) exp{βZ(t)};
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3.1. Semiparametric Transformation Models

Suppose µZ(t) follows, with either h(·) or g(·) unknown,

g(µZ(t)) = h(t) + βZ(t).

Illustrative Examples for the Models:

• Cox’s regression models:

Application: a generalization of the classical model for the
surplus process of an insurance company, where

X(t) = u + c(t) −

N(t)
∑

k=1

Uk,

u = the initial surplus, c(t) = the cumulative premiums upto t,
N(t) = the cumulative counts of claims, Uk the size of kth claim
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3.1. Semiparametric Transformation Models

Suppose µZ(t) follows, with either h(·) or g(·) unknown,

g(µZ(t)) = h(t) + βZ(t).

Illustrative Examples for the Models:

• Proportional odds models: for binary X(·),

logit(µZ(t)) = βZ(t) + h(t).

• Accelerated failure time models:

µZ(t) = µ0(te
βZ(t))

(cfs, Wei, 1992; Lin, Wei and Ying, 1998)

– p. 55



3.1. Semiparametric Transformation Models

Suppose µZ(t) follows, with either h(·) or g(·) unknown,

g(µZ(t)) = h(t) + βZ(t).

Illustrative Examples for the Models:

• Generalized linear models for repeated measures: (c.f., Zeger and
Diggle, 1994)

µZ(t) = βZ(t) + α(t)

Lin and Carroll (2001) consider the general model. So is it
mentioned in Lin and Ying (2001).
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3.1. Semiparametric Transformation Models

Suppose µZ(t) follows, with either h(·) or g(·) unknown,

g(µZ(t)) = h(t) + βZ(t).

Illustrative Examples for the Models:

• Generalized autoregressive models:
eg, the AR(1) Poisson model (McKenzie, 1988)

X(t) = β ∗ X(t − 1) + W (t),

β ∗ X(t) defined as
∑X(t)

k=1 Bk(β) with {Bk(β) : k = 1, 2, . . .}

iid binary rvs and p = β, W (t) a mean h(t) Poisson process
independent of X(t − 1).

– p. 57



3.2. Esimtation Procedures

3.2.1. With G(·) known and h(·) unknown

Generalized least squares estimation:

Consider to minimize wrt h(·) and β

n
∑

i=1

{

Xi − µ
Zi

}′

Φ
′

iWiΦi

{

Xi − µ
Zi

}
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i.e. To jointly solve the GEE type EEs, with Zi the p × M matrix
with columns Zi(t1), . . . , Zi(tM ) and
Ġi = diag

(

Ġ(βZi(tl) + h(tl)) : l = 1, . . . ,M
)

,







∑n
i=1 ZiĠiΦ

′

iWiΦi

{

Xi − µ
Zi

}

= 0
∑n

i=1 ĠiΦ
′

iWiΦi

{

Xi − µ
Zi

}

= 0

Some approaches in situations for counting process data use






∑n
i=1 ZiĠi////Φ

′

iWi///////Φi

{

Xi − µ
Zi

}

= 0
∑n

i=1 Ġi////Φ
′

iWi///////Φi

{

Xi − µ
Zi

}

= 0
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3.2. Esimtation Procedures

3.2.2. With G(·) unknown and h(·) known

Consider for situations with time-independent Z

X̃(t;β) = X(h−1(t − β
′

Z)).

Thus
E{X̃(t;β)

∣

∣Z} = G(t)

– For fixed β, use X̃i(·;β) to estimate G(·), using the EEs in 3.2.1.
– Use the estimated G(·), to estimate β, using the EEs in 3.2.1
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4. Situations with Non-Random Missing

In many situations, Xi(·) 6 ⊥δi(·). Two special cases are
considered.

4.1. Longitudinal Data with Informative Censoring Time:

Motivating Example : (Jin et al, 2004) Quality of life score collected
over time, censored at either the time that the study ends or the
death time.

Consider the conditional independent model:

Xi(·)⊥δi(·)
∣

∣Zi(·).

• Procedures in 3. may be used with some modification
• How to check for the model?
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4.2. Incomplete Longitudinal Data due to Quantifi-

cation Limit of the Assay

Motivating Example : The assay used in ACTG359 to quantify
HIV-RNA was Amplicor bioassay, with lower detection limit 500
copies/ml. (LIKE MANY LAB DATA IN PRACTICE.)

• impute 500 for all censored HIV-RNA
• impute all censored HIV-RNA by HIV-RNA copies obtained

using the Ultrasensitive bioassay
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Schroeder (2004) studies the relationship between HIV-RNA
obtained by Amplicor assay and obtained by the Ultrasensitive
assay at one time point:

X|X∗ ∼ f(x
∣

∣X∗).

How about to use it to obtain

E{Xi(t)
∣

∣X∗
i (t)},

and substitute the unobserved Xi(t) with the conditional
expectation?

• strong assumption
• not fully utilize the information from the neighborhood
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5. Final Remarks

• the Approaches
◦ intuitive: “adaptive GEE"

◦ easy to implement

• their Extensions
◦ more general observation settings

◦ spatial data, clustered data
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