Estimation from Incomplete Longitudinal Data
— What We Learn from Event History Data Analysis

Xiaogiong Joan Hu

Department of Statistics and Actuarial Science
Simon Fraser University

Vancouver, Canada

A Presentation at the Fields Institute on October 13, 2005




Outline

1. Introduction

2. Estimation in Nonparametric Models

3. Estimation in Semiparametric Models
4. Situations with Non-Random Missing
5. Final Remarks




1. Introduction

1.1. Motivating Example

ACTG 359 prospective, randomized, 2 x 3 factorial,
multicentered (Gulick et al, 2000 and 2002)

* study population: HIV-infected with indinavir experience,
HIV-RNA > 2. 000 copies/ml

* study regimens (“salvage therapies"): 6 combinations of
SQV with RTV or NFV together with DLV, ADV, or both

* response of primary interest: viral load (HIV-RNA) overtime




1. Introduction

1.1. Motivating Example

ACTG 359 prospective, randomized, 2 x 3 factorial,
multicentered (Gulick et al, 2000 and 2002)

* study population: HIV-infected with indinavir experience,
HIV-RNA > 2. 000 copies/ml

* study regimens (“salvage therapies"): 6 combinations of
SQV with RTV or NFV together with DLV, ADV, or both

* response of primary interest: viral load (HIV-RNA) overtime

ACTG359 used its Observed Sample Means at different time points
to study the trend of HIV-RNA overtime




In recent AIDS treatment clinical trials,

® primary response — a marker overtime:
e.g. HIV-RNA copies or CD4 counts (virologic/immunologic
measures);
e.g. weight, height, or IQ (age-adjusted) for children

®* missing data

* robust analysis methods are desirable:
a rapidly evolving area
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® primary response — a marker overtime:
e.g. HIV-RNA copies or CD4 counts (virologic/immunologic
measures);
e.g. weight, height, or IQ (age-adjusted) for children

®* missing data

* robust analysis methods are desirable:
a rapidly evolving area

Similar situations in many other medical studies.




For repeated measures with missing in general,

Observed Sample Mean IS commonly used in practice in a
descriptive way.




For repeated measures with missing in general,

Observed Sample Mean IS commonly used in practice in a
descriptive way.

* how does Observed Sample Mean perform?
* any alternatives?
* what can we learn from survival analysis?




Recall

* Marginal analysis in counting process setting: Lawless
(1995), Lawless and Nadeau (1995)

followed by e.g. Cook, Lawless and Nadeau (1996), Lin,
Wel, Yang and Ying (2000), Hu, Sun and Wei (2003)

* Longitudinal analysis: GEE

recent work, e.g. Robins and Rotnitzky (1995), Lin and
Carroll (2000, 2001), Wang (2003).




1.2. Framework

Response: X (t),t € T

Observation Indicator: §(t),t € 7,
with §(¢) = 1 if X (¢) observed; = 0 if not.

Covariate: Z(t),t € T




1.2. Framework

°* Response: X (t),t € T

* Observation Indicator: §(t),t € 7,
with §(¢) = 1 if X (¢) observed; = 0 if not.

* Covariate: Z(t),t € T

Goals:

* to estimate u(t) = E{X(t)},t € T.

* to estimate uz(t) = E{X(t)|Z(s) : s <t},t €T




lllustrative Examples for the Framework:

® Repeated Measures with Missing
X (t): the measure of an quantity at time ¢

o) =1(t=¢&,...,¢k), & and K rvs
u(t): the average over time of the quantity in the population




lllustrative Examples for the Framework:

® Right-censored Survival times
X (t) = (T < t): the indicator process of death

4(t) =1(¢t < C), C acensoring time
w(t): the cdf of T




lllustrative Examples for the Framework:

® Panel Counts
X (t): a counting process

o(t)=1(t=¢&1,....¢k), & and K rvs
w(t): the cumulative intensity of X if X is Poisson




2. Estimation in Nonparametric Models

(Hu and Lagakos, 2004; Hu, Lagakos, and Lockhart, 2005)

Goal:
To estimate u(t) = E{X(¢)} fromiid {X;,0, : i =1,...n}
nonparametrically

Assumptions:
°* X(-)and () independent

® Periodic Observations: all times of interest
T ={t1,t2,...,tm},0 < M < o0; E{4(¢)} >0fort € T

the Assumptions ?




2.1. Estimation Procedures

2.1.1. Observed sample mean (OSM)

For t € T, a natural estimator and commonly used in a
descriptive way:

_ D i1 Xi(t)di(t) |

Al = =5

* Unbiased
* Consistent and Asymptotically Gaussian




* A weighted least squares estimator: it minimizes
i 2
>SS s Xt —um)}
i=1 teT
l.e., It's the solution of
> @ Xi—pp=0
1=1

with X; = (X;(t1), .-, Xi(tm)) s = (p(tr), ..., p(tar)), and
¢, = diag(d;(t) :t € 7).

How does it perform numerically?




Simulation

Generate independent { X;(¢) : t € T ={0,1,...,19}},
i=1,...,100: X;(t) = e 42D @ ~ MN(V ), AR with
p = 0.8;

Generate random missing with obs rate of 20% fort € 7.

40

Full Data

mean estimate
20 30
\

10

time
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Recall “Reduced Sample Estimator” from right-censored survival
times (Kaplan and Meier, 1958):

_ D i1 Xi(t)di(t)
D i1 0i(t)

teJ

f(t)

Compared to Kaplan-Meier estimator for S(¢)?




Recall “Reduced Sample Estimator” from right-censored survival
times (Kaplan and Meier, 1958):

_ D ieq Xi(t)0i(t)
D im1 0i(t)

teJ

f(t)

Compared to Kaplan-Meier estimator for S(¢)?

How about to consider

p(t) = [u(ty) — p(to)] + [u(t2) — p(t)] + .. + [u(t) — p(t)],

and have a(t) = ), ,; ?77?




2.1.2. Cumulative observed increments (COI)

Consider to minimize, wrt v; = u(t;) — p(tj—1),
n 2
Z Z 5i(t){AX¢(t) — Am(t)} :
1=1 teT
AX;(t) = Xi(t) — Xi(si(t), Api(t) = D 5, 1)<, <t Vi~ The

weighted least squares estimator:

aty= Y 7, teT

t;€Tit; <t




2.1.2. Cumulative observed increments (COI)

Consider to minimize, wrt v; = u(t;) — p(tj—1),

S Y s {AXi(0) - A}

1=1 teT

AX;(t) = Xi(t) — Xi(si(t), Api(t) = D 5, 1)<, <t Vi~ The
weighted least squares estimator:

aty= Y 7, teT

t;€Tit; <t

* Unbiased
* Consistent, Asymptotically Gaussian




* Nelson-Aalen estimator from right-censored Poisson counts,
Lawless-Nadeau for the mean of a counting process:

i(t) = ; /O Zif";]) i), >0,




* Nelson-Aalen estimator from right-censored Poisson counts,

Lawless-Nadeau for the mean of a counting process:

;L(t):; O ZZ’(:(ZJ) (u)dXi(u), t > 0.

How does it perform numerically? Simulation (cont’d)

mean estimate

40
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2
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Recall
* 7i(-) (OSM) minimizes




How about to minimize (W, symmetric weight)

z”: {K@ - E}/@;Wz‘q’z‘{&i - E}?

=l

or, to consider the estimation equation (GEE type)

zn:WZ(I)Z{XZ — E} = 07?
1=1




How about to minimize (W, symmetric weight)
Z {K@ - E} @;Wiq)z‘{&i - E}?
i=1

or, to consider the estimation equation (GEE type)

zn:WZ(I)Z{XZ — E} = 07?
1=1

What W; to use?
* the inverse of Var(®;X,)?
* COl: W; = Q..
* What else?




2.1.3. Projection of Nelson-Aalen estimator (PNA)

Recall Nelson-Aalen estimator, the solution of the EE based on
right-censored data:

> YO [Xilt) = Xi(s(0)] — At } = 0.1 €T,

Ap(t) = p(t) — p(s(t)) = v(t) and Yi(t) = I(t < C).




2.1.3. Projection of Nelson-Aalen estimator (PNA)

Recall Nelson-Aalen estimator, the solution of the EE based on
right-censored data:

> YO [Xilt) = Xi(s(0)] — At } = 0.1 €T,

Ap(t) = p(t) — p(s(t) = v(t) and Yi(t) = 1(t < Cs).

For the current situation, to consider for ¢t € T

ZYi(t){E[Xi(t)—Xz-(s(t))|Xi(u) Si(u) = 1,u € :T}—Au(t)} — 0




The EE gives, fort € T,
pu(t) =

D YZ] 1YJ( ) E[Xi(v) — Xi(s(v))| Xi(u) :

veTv<t 1=1

How to get E[X@(t) — X@(S(t))‘Xz(u) : 5z(u) =1,u € ‘T]r)




Denote A*Xz(t) — X}'(Sﬂ< (t)) — XZ(SZ(t))

1

* |n survival setting,
E|X:(t) — Xi(s(t))‘Xz-(u) :0i(u) =1,u e T]
{ 0 if A*X;(¢)

A . o
SO it AT X(1)

0 Awp(t) ve
LT M) ()




Denote A*Xz(t) — X}'(Sﬂ< (t)) — XZ(SZ(t))

1

* For Poisson counts,

E[Xi(t)—Xi(s(t))‘Xi(u) :0i(u) =1LueT| = AA*/:sz)A*XZ(t)




Denote A*Xz(t) — X}'(Sﬂ< (t)) — XZ(SZ(t))

1

* In general, E[X;(t) — Xi(s(t))|X;(u) : 6;(u) = 1,u € T| and
A*X;(t) AA*Z% have the same expectation Apu(t),
conditional on the observation.




Recall the projection of NA estimator: fort € T,
pu(t) =

5‘72

veT:w<t 1=1 J= 11/3( )




Recall the projection of NA estimator: fort € T,
pu(t) =

5‘5‘2

veT:w<t 1=1 J= 1Y7< )

Thus

X () D)
= 2 ng m< yA ) R )

veTw<t 1=1

Its solution (by an iterative algorithm) is /().

tel.




Estimator /i(-),

* self-consistent

* ituses W; = Q2,3 '9); in the GEE type EE:
Y = diag(Q;p - t € T), it's Var(Q; X;) when X (-) is Poisson.




Estimator /i(-),

* self-consistent
* ituses W; = Q.3 'Q; in the GEE type EE:
Y = diag(Q;p - t € T), it's Var(Q; X;) when X (-) is Poisson.
* the same as NMLE of u(-) from panel counts under Poisson
assumption, given by Wellner and Zhang (2000)

* consistent and asymptotically Gaussian




How does it perform numerically?

Simulation (cont’d)
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How does it perform numerically? Simulation (cont’d)

Based on 100 repetitions: the sample means?
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How does it perform numerically? Simulation (cont’d)

Based on 100 repetitions: the sample mean square erros?
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2.2. Estimation for Monotone Mean

When p(-) is monotone?

* In survival setting, u(-) = F(-)
* In counting process setting, u(-) = A(*)

* X;(-) as height overtime, or 1Q (age adjusted) overtime of
HIV children

Note
* u(-) and ji(-) not necessarily monotone
* () is monotone, when X (-) is monotone




Consider to minimize wrt p(-)

3 (X, p} W {x, -

=1l

under the monotone constraint.

K

|




Consider to minimize wrt p(-)

2”: {& - H}/@Wz‘q’z‘{& - H}

=1l

under the monotone constraint.

* if use OSM weight, = *(+), the isotonic regression of ji(-)
with weights {M(¢) : the num of obs att € T}
the same as the estimator given by Sun and Kalbfleisch
(1995), called the NPMLE by Wellner and Zhang (2000)




Consider to minimize wrt p(-)

i {Kz‘ - H}/qD;Wiq’i{Xi - E}

=1l

under the monotone constraint.

* if use COIl weight, = 1*(-), obtained by the iterative convex

minorant (ICM) algorithm
slightly different from the isotonic regression of fi(-) with

weights {M(-)}




Consider to minimize wrt p(-)

i {Kz‘ - H}/qD;Wiq’i{Xi - E}

=1l

under the monotone constraint.

* if use PNA weight, = /i*(-), obtained by the iterative
convex minorant (ICM) algorithm
slightly different from the PNA /i(-), likely more efficient than

()

to improve fi(-) in counting process setting?




Simulation (cont’d)
Based on 100 repetitions: the OSM estimators i and i*
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Simulation (cont’d)
Based on 100 repetitions: the COI estimators ;i and ;*
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Simulation (cont’d)
Based on 100 repetitions: the PNA estimators  and &*
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3. Estimation in Semiparametric Models

(Hu, Jin and Lagakos, 2005)

Goal:
To estimate pz(t) = E{X (¢)|Z(s),s < t} from iid

{Xi,(?i:z':l,...n},

pz(t) = G(h(-),5; 2("))




3. Estimation in Semiparametric Models

(Hu, Jin and Lagakos, 2005)

Goal:
To estimate pz(t) = E{X (¢)|Z(s),s < t} from iid

{Xi,(?i:z':l,...n},

pz(t) = G(h(-),5; 2("))

Assumptions:
°* X(-)and () independent

® Periodic Observation: all times of interest
T={ti,ta,...,tm},0 <M < o0; E{é(t)} >0fort e T




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,

9(pz(t)) = h(t) + 6Z(1).




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,

9(pz(t)) = h(t) + 6Z(1).

lllustrative Examples for the Models:

® Cox’s regression models.

° In survival setting, Cox’s proportional hazards model
(Cox, 1972)

uz(t) = So(t)*PP#Ok,

© In counting process setting, conditional cumulative
Intensity (c.f. Andersen, Borgan, Gill and Keiding, 1991)

pz(t) = Ao(t) exp{BZ(1)};




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,

9(pz(t)) = h(t) + 6Z(1).

lllustrative Examples for the Models:
® Cox’s regression models.

Application: a generalization of the classical model for the
surplus process of an insurance company, where

N(t)
X(t)=u+c(t)— > U,
k=1

u = the initial surplus, ¢(¢) = the cumulative premiums upto ¢,
N (t) = the cumulative counts of claims, U} the size of kth claim




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,

9(uz(t)) = h(t) + BZ(t).
lllustrative Examples for the Models:

® Proportional odds models: for binary X (-),

logit(pz(t)) = BZ(t) + h(1).

® Accelerated failure time models:

pz(t) = po(te’?W)

(cfs, Wel, 1992; Lin, Wel and Ying, 1998)




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,

9(uz(t)) = h(t) + BZ(t).
lllustrative Examples for the Models:

® Generalized linear models for repeated measures: (C.f., Zeger and

Diggle, 1994)
pz(t) = BZ(1) + a(t)

Lin and Carroll (2001) consider the general model. So is it
mentioned in Lin and Ying (2001).




3.1. Semiparametric Transformation Models

Suppose iz (t) follows, with either A(-) or g(-) unknown,
9(uz(t)) = h(t) + BZ(t).
lllustrative Examples for the Models:

® Generalized autoregressive models:

eg, the AR(1) Poisson model (McKenzie, 1988)

Xt)=0«X({t—1)+W(t),

B X (t) defined as 3% By (3) with {By(8) : k = 1,2,...}
id binary rvs and p = 3, W (t) a mean h(t) Poisson process
independent of X (¢t —1).




3.2. Esimtation Procedures

3.2.1. With G(-) known and h(-) unknown

Generalized least squares estimation:

Consider to minimize wrt h(-) and




l.e. To jointly solve the GEE type EEs, with Z; the p x M matrix
with columns Zi(t1), ..., Zi(tyr) and

G; = diag (G NBZ; (tl) + h(tl)) l=1,...,M),

| Y ZiG Wi X —
ZHG¢W<I>{ }

i:




l.e. To jointly solve the GEE type EEs, with Z; the p x M matrix
with columns Z;(t1), ..., Z;(tar) and

G; = diag(G(BZ;i(t;) + h(t)) : I =1,..., M),

(

S ZiG Wi X~ L =0
s Gicb;Wicbi{& _ Hzi} — 0

\

Some approaches in situations for counting process data use

(S Z WD { X, — 1, } =0

<\ s q’;/i/cp/iW//@{& - Ez,b} -

—n. €



3.2. Esimtation Procedures

3.2.2. With G(+) unknown and h(-) known

Consider for situations with time-independent Z
X(t;8) = X(h™'(t — B 2)).
Thus
E{X(t;8)|Z} = G(t)

— For fixed 3, use X;(-; ) to estimate G(-), using the EEs in 3.2.1.
— Use the estimated G(-), to estimate 3, using the EEs in 3.2.1

—n. €



4. Situations with Non-Random Missing

In many situations, X;(-) /A.4;(-). Two special cases are
considered.

4.1. Longitudinal Data with Informative Censoring Time:

Motivating Example : (Jin et al, 2004) Quality of life score collected
over time, censored at either the time that the study ends or the

death time.
Consider the conditional independent model:
Xi(-)L8:(-)| Z(-).

* Procedures in 3. may be used with some modification
* How to check for the model?

—n. €



4.2. Incomplete Longitudinal Data due to Quantifi-

cation Limit of the Assay

Motivating Example . The assay used in ACTG359 to quantify
HIV-RNA was Amplicor bioassay, with lower detection limit 500
copies/ml. (LIKE MANY LAB DATA IN PRACTICE.)

* impute 500 for all censored HIV-RNA

* impute all censored HIV-RNA by HIV-RNA copies obtained
using the Ultrasensitive bioassay

—n. €



Schroeder (2004) studies the relationship between HIV-RNA
obtained by Amplicor assay and obtained by the Ultrasensitive
assay at one time point:

X|X* ~ f(z]|X¥).
How about to use it to obtain
E{X;(t)|X] (1)},

and substitute the unobserved X;(t) with the conditional
expectation?

® strong assumption
* not fully utilize the information from the neighborhood

—n. €



5. Final Remarks

* the Approaches
° Intuitive: “adaptive GEE"

© easy to implement

—n. €



5. Final Remarks

* the Approaches
° Intuitive: “adaptive GEE"

© easy to implement

* their Extensions
© more general observation settings

o spatial data, clustered data

—n. €
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