Estimation from Incomplete Longitudinal Data – What We Learn from Event History Data Analysis

Xiaoqiong Joan Hu

Department of Statistics and Actuarial Science Simon Fraser University Vancouver, Canada

A Presentation at the Fields Institute on October 13, 2005

Outline

- 1. Introduction
- 2. Estimation in Nonparametric Models
- 3. Estimation in Semiparametric Models
- 4. Situations with Non-Random Missing
- 5. Final Remarks

1. Introduction

1.1. Motivating Example

<u>ACTG 359</u> prospective, randomized, 2×3 factorial, multicentered (Gulick et al, 2000 and 2002)

- study population: HIV-infected with indinavir experience, HIV-RNA $\geq 2,000$ copies/ml
- study regimens ("salvage therapies"): 6 combinations of SQV with RTV or NFV together with DLV, ADV, or both
- response of primary interest: viral load (HIV-RNA) overtime

ACTG359 used its Observed Sample Means at different time points to study the trend of HIV-RNA overtime

1. Introduction

1.1. Motivating Example

<u>ACTG 359</u> prospective, randomized, 2×3 factorial, multicentered (Gulick et al, 2000 and 2002)

- study population: HIV-infected with indinavir experience, HIV-RNA $\geq 2,000$ copies/ml
- study regimens ("salvage therapies"): 6 combinations of SQV with RTV or NFV together with DLV, ADV, or both
- response of primary interest: viral load (HIV-RNA) overtime

ACTG359 used its *Observed Sample Means* at different time points to study the trend of HIV-RNA overtime

In recent AIDS treatment clinical trials,

- primary response a marker overtime:
 e.g. HIV-RNA copies or CD4 counts (virologic/immunologic measures);
 e.g. weight, height, or IQ (age-adjusted) for children
- missing data
- robust analysis methods are desirable: a rapidly evolving area

Similar situations in many other medical studies.

In recent AIDS clinical trials,

- primary response a marker overtime:
 e.g. HIV-RNA copies or CD4 counts (virologic/immunologic measures);
 e.g. weight, height, or IQ (age-adjusted) for children
- missing data
- robust analysis methods are desirable: a rapidly evolving area

Similar situations in many other medical studies.

For repeated measures with missing in general,

Observed Sample Mean is commonly used in practice in a descriptive way.

- how does Observed Sample Mean perform?
- any alternatives?
- what can we learn from survival analysis?

For repeated measures with missing in general,

Observed Sample Mean is commonly used in practice in a descriptive way.

- how does Observed Sample Mean perform?
- any alternatives?
- what can we learn from survival analysis?

Recall

 Marginal analysis in counting process setting: Lawless (1995), Lawless and Nadeau (1995)

followed by e.g. Cook, Lawless and Nadeau (1996), Lin, Wei, Yang and Ying (2000), Hu, Sun and Wei (2003)

Longitudinal analysis: GEE

recent work, e.g. Robins and Rotnitzky (1995), Lin and Carroll (2000, 2001), Wang (2003).

1.2. Framework

- Response: $X(t), t \in \mathcal{T}$
- Observation Indicator: $\delta(t), t \in \mathcal{T}$, with $\delta(t) = 1$ if X(t) observed; = 0 if not.
- Covariate: $Z(t), t \in \mathcal{T}$

Goals:

- to estimate $\mu(t) = \mathsf{E}\{X(t)\}, t \in \mathcal{T}.$
- to estimate $\mu_Z(t) = \mathsf{E}\{X(t) | Z(s) : s \le t\}, t \in \mathfrak{T}$

1.2. Framework

- Response: $X(t), t \in \mathcal{T}$
- Observation Indicator: $\delta(t), t \in \mathcal{T}$, with $\delta(t) = 1$ if X(t) observed; = 0 if not.
- Covariate: $Z(t), t \in \mathcal{T}$

Goals:

- to estimate $\mu(t) = \mathsf{E}\{X(t)\}, t \in \mathfrak{T}.$
- to estimate $\mu_Z(t) = \mathsf{E}\{X(t) | Z(s) : s \le t\}, t \in \mathfrak{T}$

Illustrative Examples for the Framework:

- Repeated Measures with Missing X(t): the measure of an quantity at time t $\delta(t) = I(t = \xi_1, \dots, \xi_K), \xi_j$ and K rvs $\mu(t)$: the average over time of the quantity in the population
- *Right-censored Survival times* X(t) = I(T ≤ t): the indicator process of death δ(t) = I(t ≤ C), C a censoring time μ(t): the cdf of T
- Panel Counts X(t): a counting process $\delta(t) = I(t = \xi_1, \dots, \xi_K), \xi_j$ and K rvs $\mu(t)$: the cumulative intensity of X if X is Poisson

Illustrative Examples for the Framework:

- Repeated Measures with Missing
 X(t): the measure of an quantity at time t
 δ(t) = I(t = ξ₁,..., ξ_K), ξ_j and K rvs
 μ(t): the average over time of the quantity in the population
- Right-censored Survival times
 X(t) = I(T ≤ t): the indicator process of death
 δ(t) = I(t ≤ C), C a censoring time
 μ(t): the cdf of T
- Panel Counts X(t): a counting process $\delta(t) = I(t = \xi_1, \dots, \xi_K), \xi_j$ and K rvs $\mu(t)$: the cumulative intensity of X if X is Poisson

Illustrative Examples for the Framework:

- Repeated Measures with Missing
 X(t): the measure of an quantity at time t
 δ(t) = I(t = ξ₁,..., ξ_K), ξ_j and K rvs
 μ(t): the average over time of the quantity in the population
- Right-censored Survival times
 X(t) = I(T ≤ t): the indicator process of death
 δ(t) = I(t ≤ C), C a censoring time
 μ(t): the cdf of T
- Panel Counts X(t): a counting process $\delta(t) = I(t = \xi_1, \dots, \xi_K)$, ξ_j and K rvs $\mu(t)$: the cumulative intensity of X if X is Poisson

2. Estimation in Nonparametric Models

(Hu and Lagakos, 2004; Hu, Lagakos, and Lockhart, 2005)

Goal: To estimate $\mu(t) = \mathsf{E}\{X(t)\}$ from $iid \{X_i, \delta_i : i = 1, ..., n\}$ nonparametrically

Assumptions:

- $X(\cdot)$ and $\delta(\cdot)$ independent
- Periodic Observations: all times of interest $\mathcal{T} = \{t_1, t_2, \dots, t_M\}, 0 < M < \infty; \mathsf{E}\{\delta(t)\} > 0 \text{ for } t \in \mathcal{T}$

the Assumptions ?

2.1. Estimation Procedures

2.1.1. Observed sample mean (OSM)

For $t \in \mathcal{T}$, a natural estimator and commonly used in a descriptive way:

$$\bar{\mu}(t) = \frac{\sum_{i=1}^{n} X_i(t)\delta_i(t)}{\sum_{i=1}^{n} \delta_i(t)}.$$

Unbiased

Consistent and Asymptotically Gaussian

• A weighted least squares estimator: it minimizes

$$\sum_{i=1}^{n} \sum_{t \in \mathcal{T}} \delta_i(t) \Big\{ X_i(t) - \mu(t) \Big\}^2,$$

i.e., it's the solution of

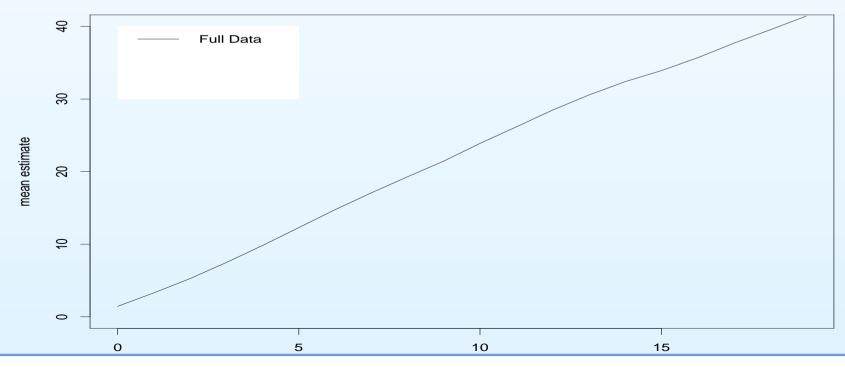
$$\sum_{i=1}^{n} \Phi_i \left\{ \underline{X}_i - \underline{\mu} \right\} = 0$$

with $\underline{X}_i = (X_i(t_1), \dots, X_i(t_M))'$, $\underline{\mu} = (\mu(t_1), \dots, \mu(t_M))'$, and $\Phi_i = diag(\delta_i(t) : t \in \mathfrak{T})$.

How does it perform numerically?

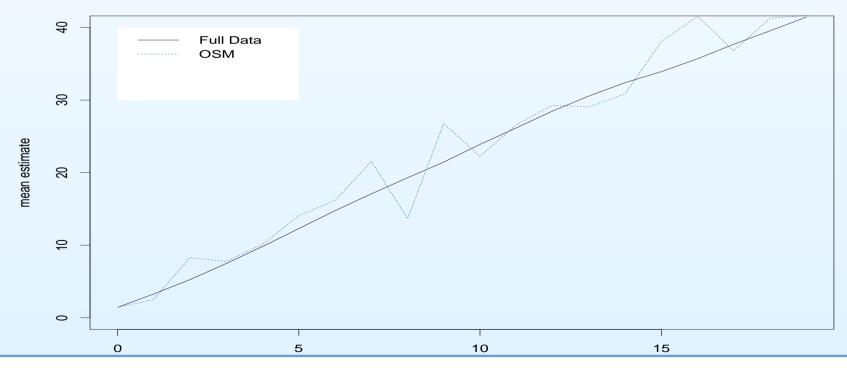
Simulation

Generate independent $\{X_i(t) : t \in \mathcal{T} = \{0, 1, \dots, 19\}\}$, $i = 1, \dots, 100$: $X_i(t) = e^{Q_i(t)} + e^{Q_i(t-1)}$, $\underline{Q} \sim MN(\underline{\nu}, \Sigma)$, AR with $\rho = 0.8$; Generate random missing with obs rate of 20% for $t \in \mathcal{T}$.



Simulation

Generate independent $\{X_i(t) : t \in \mathcal{T} = \{0, 1, \dots, 19\}\}$, $i = 1, \dots, 100$: $X_i(t) = e^{Q_i(t)} + e^{Q_i(t-1)}$, $\underline{Q} \sim MN(\underline{\nu}, \Sigma)$, AR with $\rho = 0.8$; Generate random missing with obs rate of 20% for $t \in \mathcal{T}$.



Recall *"Reduced Sample Estimator"* from right-censored survival times (Kaplan and Meier, 1958):

$$\bar{\mu}(t) = \frac{\sum_{i=1}^{n} X_i(t)\delta_i(t)}{\sum_{i=1}^{n} \delta_i(t)}, \quad t \in \mathcal{T}$$

Compared to Kaplan-Meier estimator for S(t)?

How about to consider $\mu(t) = [\mu(t_1) - \mu(t_0)] + [\mu(t_2) - \mu(t_1)] + \ldots + [\mu(t) - \mu(t_l)],$ and have $\tilde{\mu}(t) = \sum_{t_j \leq t} \tilde{\nu}_j$?? Recall *"Reduced Sample Estimator"* from right-censored survival times (Kaplan and Meier, 1958):

$$\bar{\mu}(t) = \frac{\sum_{i=1}^{n} X_i(t)\delta_i(t)}{\sum_{i=1}^{n} \delta_i(t)}, \quad t \in \mathcal{T}$$

Compared to Kaplan-Meier estimator for S(t)?

How about to consider

 $\mu(t) = [\mu(t_1) - \mu(t_0)] + [\mu(t_2) - \mu(t_1)] + \ldots + [\mu(t) - \mu(t_l)],$

and have $\tilde{\mu}(t) = \sum_{t_j \leq t} \tilde{\nu}_j$???

2.1.2. Cumulative observed increments (COI)

Consider to minimize, wrt $\nu_j = \mu(t_j) - \mu(t_{j-1})$,

$$\sum_{i=1}^{n} \sum_{t \in \mathcal{T}} \delta_i(t) \Big\{ \Delta X_i(t) - \Delta \mu_i(t) \Big\}^2,$$

 $\Delta X_i(t) = X_i(t) - X_i(s_i(t)), \ \Delta \mu_i(t) = \sum_{s_i(t) < t_j \le t} \nu_j$. The weighted least squares estimator:

$$\tilde{\mu}(t) = \sum_{t_j \in \mathfrak{T}: t_j \le t} \tilde{\nu}_j, \quad t \in \mathfrak{T}.$$

Unbiased

Consistent, Asymptotically Gaussian

2.1.2. Cumulative observed increments (COI)

Consider to minimize, wrt $\nu_j = \mu(t_j) - \mu(t_{j-1})$,

$$\sum_{i=1}^{n} \sum_{t \in \mathcal{T}} \delta_i(t) \Big\{ \Delta X_i(t) - \Delta \mu_i(t) \Big\}^2,$$

 $\Delta X_i(t) = X_i(t) - X_i(s_i(t)), \ \Delta \mu_i(t) = \sum_{s_i(t) < t_j \le t} \nu_j$. The weighted least squares estimator:

$$\tilde{\mu}(t) = \sum_{t_j \in \mathfrak{T}: t_j \le t} \tilde{\nu}_j, \quad t \in \mathfrak{T}.$$

- Unbiased
- Consistent, Asymptotically Gaussian

• Nelson-Aalen estimator from right-censored Poisson counts, Lawless-Nadeau for the mean of a counting process:

$$\tilde{\mu}(t) = \sum_{i=1}^{n} \int_{0}^{t} \frac{\delta_{i}(u)}{\sum_{j=1}^{n} \delta_{j}(u)} dX_{i}(u), \quad t > 0.$$

How does it perform numerically?

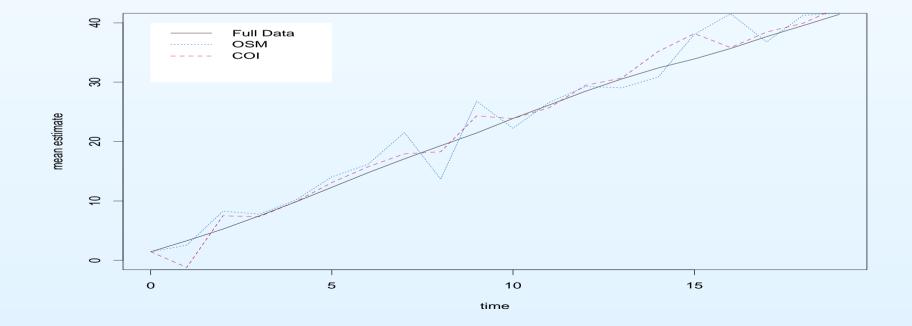
Simulation (CONt'd)

 Nelson-Aalen estimator from right-censored Poisson counts, Lawless-Nadeau for the mean of a counting process:

$$\tilde{\mu}(t) = \sum_{i=1}^{n} \int_{0}^{t} \frac{\delta_{i}(u)}{\sum_{j=1}^{n} \delta_{j}(u)} dX_{i}(u), \quad t > 0.$$

How does it perform numerically?

Simulation (cont'd)



Recall

• $\bar{\mu}(\cdot)$ (OSM) minimizes

$$\sum_{i=1}^{n} \left\{ \Phi_i \underline{X}_i - \Phi_i \underline{\mu} \right\}' \left\{ \Phi_i \underline{X}_i - \Phi_i \underline{\mu} \right\} = \sum_{i=1}^{n} \left\{ \underline{X}_i - \underline{\mu} \right\}' \Phi_i' \Phi_i \left\{ \underline{X}_i - \underline{\mu} \right\};$$

• $\tilde{\mu}(\cdot)$ (COI) minimizes

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' \Omega_{i} \Omega_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\},$$

 $\Omega_i \underline{X}_i = (\delta_i(t) \Delta X_i(t), t \in \mathfrak{T})'.$

How about to minimize (W_i symmetric weight)

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}?$$

or, to consider the estimation equation (GEE type)

$$\sum_{i=1}^{n} W_i \Phi_i \left\{ \underline{X}_i - \underline{\mu} \right\} = 0?$$

What W_i to use?

- the inverse of $Var(\Phi_i \underline{X}_i)$?
- COI: $W_i = \Omega'_i \Omega_i$.
- What else?

How about to minimize (W_i symmetric weight)

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}?$$

or, to consider the estimation equation (GEE type)

$$\sum_{i=1}^{n} W_i \Phi_i \left\{ \underline{X}_i - \underline{\mu} \right\} = 0?$$

What W_i to use?

- the inverse of $Var(\Phi_i \underline{X}_i)$?
- COI: $W_i = \Omega'_i \Omega_i$.
- What else?

2.1.3. Projection of Nelson-Aalen estimator (PNA)

Recall Nelson-Aalen estimator, the solution of the EE based on right-censored data:

$$\sum_{i=1}^{n} Y_i(t) \left\{ \left[X_i(t) - X_i(s(t)) \right] - \Delta \mu(t) \right\} = 0, t \in \mathcal{T},$$

 $\Delta \mu(t) = \mu(t) - \mu(s(t)) = \nu(t) \text{ and } Y_i(t) = \mathsf{I}(t \le C_i).$

For the current situation, to consider for $t \in \mathcal{T}$

 $\sum_{i=1}^{n} Y_{i}(t) \Big\{ \mathsf{E} \big[X_{i}(t) - X_{i}(s(t)) \big| X_{i}(u) : \delta_{i}(u) = 1, u \in \mathfrak{T} \big] - \Delta \mu(t) \Big\} = 0.$

2.1.3. Projection of Nelson-Aalen estimator (PNA)

Recall Nelson-Aalen estimator, the solution of the EE based on right-censored data:

$$\sum_{i=1}^{n} Y_i(t) \left\{ \left[X_i(t) - X_i(s(t)) \right] - \Delta \mu(t) \right\} = 0, t \in \mathcal{T},$$

 $\Delta \mu(t) = \mu(t) - \mu(s(t) = \nu(t) \text{ and } Y_i(t) = \mathsf{I}(t \le C_i).$

For the current situation, to consider for $t \in \mathcal{T}$

$$\sum_{i=1}^{n} Y_{i}(t) \Big\{ \mathsf{E} \big[X_{i}(t) - X_{i}(s(t)) \big| X_{i}(u) : \delta_{i}(u) = 1, u \in \mathfrak{T} \big] - \Delta \mu(t) \Big\} = 0.$$

The EE gives, for $t \in \mathcal{T}$,

$$\mu(t) = \sum_{v \in \mathfrak{T}: v \leq t} \sum_{i=1}^{n} \frac{Y_i(v)}{\sum_{j=1}^{n} Y_j(v)} \mathsf{E} \Big[X_i(v) - X_i(s(v)) \Big| X_i(u) : \begin{array}{c} \delta_i(u) = 1, \\ u \in \mathfrak{T} \end{array} \Big].$$

How to get $\mathsf{E}[X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathfrak{T}]$?

Denote $\Delta^* X_i(t) = X_i(s_i^*(t)) - X_i(s_i(t)).$

• In survival setting,

$$\mathsf{E} \begin{bmatrix} X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathfrak{T} \end{bmatrix}$$

=
$$\begin{cases} 0 & \text{if } \Delta^* X_i(t) = 0 \\ \frac{\Delta\mu(t)}{\Delta^*\mu_i(t)} & \text{if } \Delta^* X_i(t) = 1 \end{cases} = \frac{\Delta\mu(t)}{\Delta^*\mu_i(t)} \Delta^* X_i(t)$$

For Poisson counts,

 $\mathsf{E}[X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathfrak{T}] = \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)} \Delta^* X_i(t).$

• In general, $E[X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathcal{T}]$ and $\Delta^* X_i(t) \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)}$ have the same expectation $\Delta \mu(t)$, conditional on the observation.

Denote $\Delta^* X_i(t) = X_i(s_i^*(t)) - X_i(s_i(t)).$

In survival setting.

 $\begin{aligned} \mathsf{E} \big[X_i(t) - X_i(s(t)) \big| X_i(u) &: \delta_i(u) = 1, u \in \mathfrak{I} \big] \\ \left\{ \begin{array}{l} 0 & \text{if } \Delta^* X_i(t) = 0 \\ \frac{\Delta\mu(t)}{\Delta^*\mu_i(t)} & \text{if } \Delta^* X_i(t) = 1 \end{array} \right. = \frac{\Delta\mu(t)}{\Delta^*\mu_i(t)} \Delta^* X_i(t) \end{aligned}$

• For Poisson counts,

 $\mathsf{E}\big[X_i(t) - X_i(s(t))\big| X_i(u) : \delta_i(u) = 1, u \in \mathfrak{T}\big] = \frac{\Delta\mu(t)}{\Delta^*\mu_i(t)} \Delta^* X_i(t).$

• In general, $\mathbb{E}\left[X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathcal{T}\right]$ and $\Delta^* X_i(t) \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)}$ have the same expectation $\Delta \mu(t)$, conditional on the observation.

Denote $\Delta^* X_i(t) = X_i(s_i^*(t)) - X_i(s_i(t)).$

In survival setting.

 $\mathsf{E}[X_i(t) - X_i(s(t)) | X_i(u) : \delta_i(u) = 1, u \in \mathcal{T}]$ = $\begin{cases} 0 & \text{if } \Delta^* X_i(t) = 0 \\ \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)} & \text{if } \Delta^* X_i(t) = 1 \end{cases} = \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)} \Delta^* X_i(t)$

For Poisson counts,

 $\mathsf{E}\big[X_i(t) - X_i(s(t))\big| X_i(u) : \delta_i(u) = 1, u \in \mathfrak{T}\big] = \frac{\Delta\mu(t)}{\Delta^* u_i(t)} \Delta^* X_i(t).$

• In general, $\mathsf{E} \left[X_i(t) - X_i(s(t)) \middle| X_i(u) : \delta_i(u) = 1, u \in \mathcal{T} \right]$ and $\Delta^* X_i(t) \frac{\Delta \mu(t)}{\Delta^* \mu_i(t)}$ have the same expectation $\Delta \mu(t)$, conditional on the observation.

Recall the projection of NA estimator: for $t \in \mathcal{T}$,

$$\mu(t) = \sum_{v \in \mathfrak{T}: v \leq t} \sum_{i=1}^{n} \frac{Y_i(v)}{\sum_{j=1}^{n} Y_j(v)} \mathsf{E} \Big[X_i(v) - X_i(s(v)) \big| X_i(u) : \begin{array}{c} \delta_i(u) = 1, \\ u \in \mathfrak{T} \end{array} \Big].$$

Thus

$$\mu(t) = \sum_{v \in \mathfrak{T}: v \le t} \sum_{i=1}^{n} \frac{Y_i(v)}{\sum_{j=1}^{n} Y_j(v)} \Delta^* X_i(v) \frac{\Delta \mu(v)}{\Delta^* \mu_i(v)}, t \in \mathfrak{T}.$$

Its solution (by an iterative algorithm) is $\hat{\mu}(\cdot)$.

Recall the projection of NA estimator: for $t \in \mathcal{T}$,

$$\mu(t) = \sum_{v \in \mathfrak{T}: v \leq t} \sum_{i=1}^{n} \frac{Y_i(v)}{\sum_{j=1}^{n} Y_j(v)} \mathsf{E} \Big[X_i(v) - X_i(s(v)) \Big| X_i(u) : \begin{array}{c} \delta_i(u) = 1, \\ u \in \mathfrak{T} \end{array} \Big].$$

Thus

$$\mu(t) = \sum_{v \in \mathfrak{T}: v \le t} \sum_{i=1}^{n} \frac{Y_i(v)}{\sum_{j=1}^{n} Y_j(v)} \Delta^* X_i(v) \frac{\Delta \mu(v)}{\Delta^* \mu_i(v)}, t \in \mathfrak{T}.$$

Its solution (by an iterative algorithm) is $\hat{\mu}(\cdot)$.

Estimator $\hat{\mu}(\cdot)$,

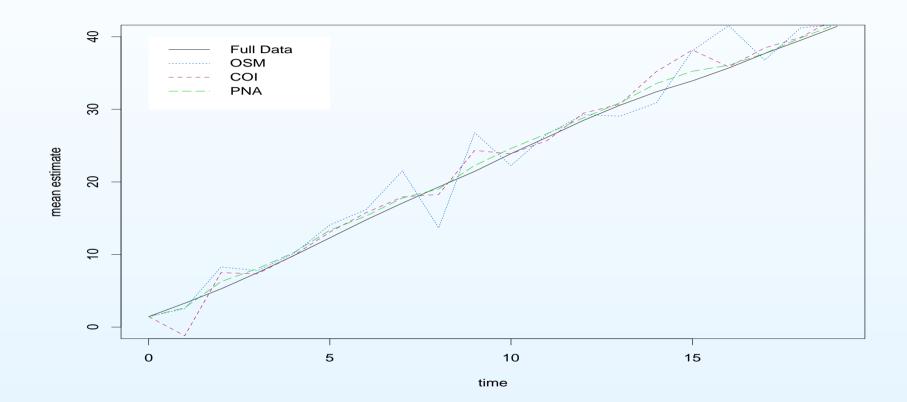
- self-consistent
- it uses $W_i = \Omega'_i \Sigma_i^{-1} \Omega_i$ in the GEE type EE: $\Sigma_i = diag(\Omega_i \underline{\mu} : t \in \mathfrak{T})$, it's $Var(\Omega_i \underline{X}_i)$ when $X(\cdot)$ is Poisson.
- the same as NMLE of $\mu(\cdot)$ from panel counts under Poisson assumption, given by Wellner and Zhang (2000)
- consistent and asymptotically Gaussian

Estimator $\hat{\mu}(\cdot)$,

- self-consistent
- it uses $W_i = \Omega'_i \Sigma_i^{-1} \Omega_i$ in the GEE type EE: $\Sigma_i = diag(\Omega_i \underline{\mu} : t \in \mathfrak{T})$, it's $Var(\Omega_i \underline{X}_i)$ when $X(\cdot)$ is Poisson.
- the same as NMLE of $\mu(\cdot)$ from panel counts under Poisson assumption, given by Wellner and Zhang (2000)
- consistent and asymptotically Gaussian

How does it perform numerically?

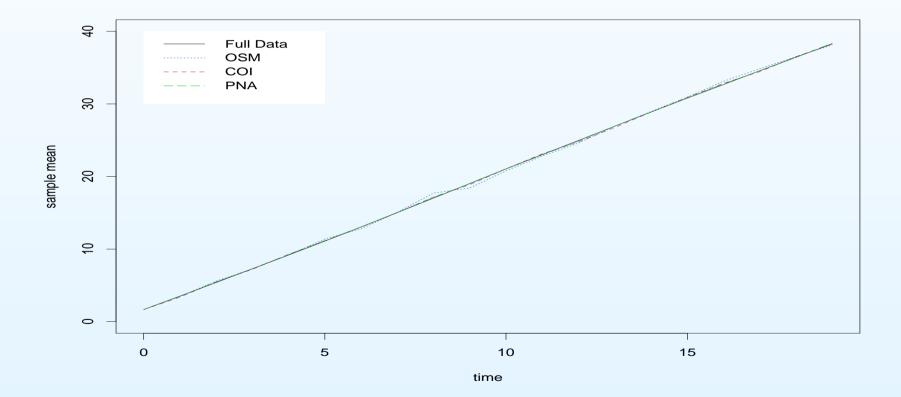
Simulation (cont'd)



How does it perform numerically?

Simulation (CONt'd)

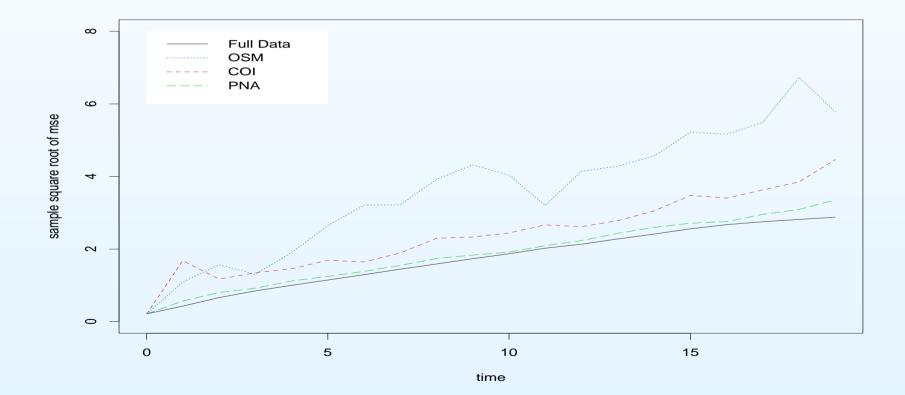
Based on 100 repetitions: the sample means?



How does it perform numerically?

Simulation (CONt'd)

Based on 100 repetitions: the sample mean square erros?



2.2. Estimation for Monotone Mean

When $\mu(\cdot)$ is monotone?

- In survival setting, $\mu(\cdot) = F(\cdot)$
- In counting process setting, $\mu(\cdot) = \Lambda(\cdot)$
- $X_i(\cdot)$ as height overtime, or IQ (age adjusted) overtime of HIV children

Note

- $\bar{\mu}(\cdot)$ and $\tilde{\mu}(\cdot)$ not necessarily monotone
- $\hat{\mu}(\cdot)$ is monotone, when $X(\cdot)$ is monotone

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}$$

under the monotone constraint.

if use OSM weight, ⇒ µ^{*}(·), the isotonic regression of µ(·) with weights {M(t) : the num of obs at t ∈ ℑ} the same as the estimator given by Sun and Kalbfleisch (1995), called the NPMLE by Wellner and Zhang (2000)

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}$$

under the monotone constraint.

if use OSM weight, ⇒ µ^{*}(·), the isotonic regression of µ(·) with weights {M(t) : the num of obs at t ∈ ℑ} the same as the estimator given by Sun and Kalbfleisch (1995), called the NPMLE by Wellner and Zhang (2000)

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}$$

under the monotone constraint.

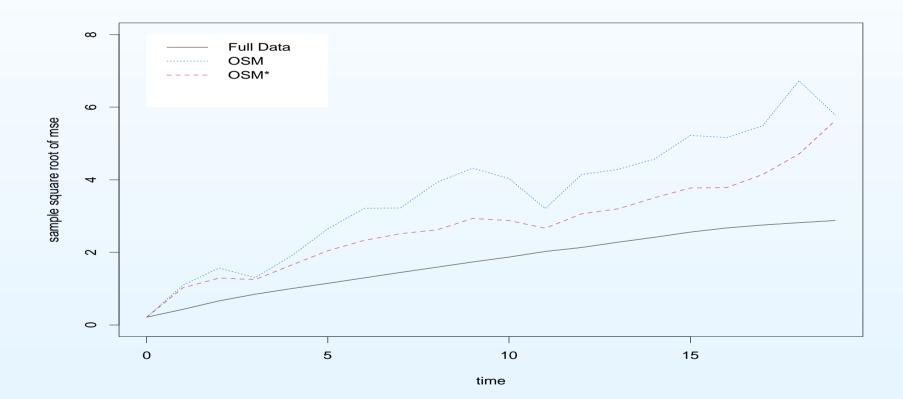
• if use COI weight, $\implies \tilde{\mu}^*(\cdot)$, obtained by the iterative convex minorant (ICM) algorithm slightly different from the isotonic regression of $\tilde{\mu}(\cdot)$ with weights $\{M(\cdot)\}$

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu} \right\}$$

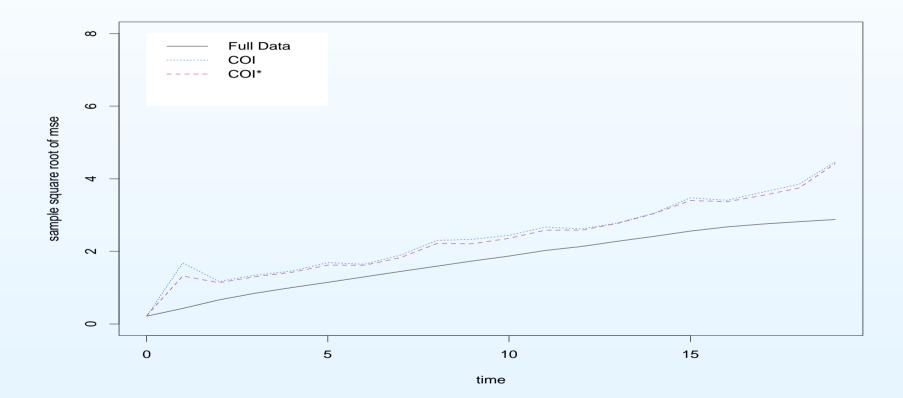
under the monotone constraint.

if use PNA weight, ⇒ µ̂*(·), obtained by the iterative convex minorant (ICM) algorithm slightly different from the PNA µ̂(·), likely more efficient than µ̂(·)
 in counting process setting?

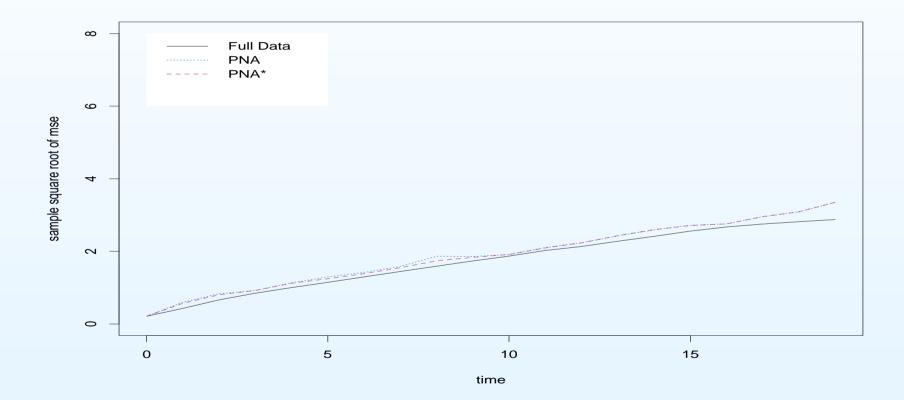
Simulation (cont'd) Based on 100 repetitions: the OSM estimators $\bar{\mu}$ and $\bar{\mu}^*$



Simulation (cont'd) Based on 100 repetitions: the COI estimators $\tilde{\mu}$ and $\tilde{\mu}^*$



Simulation (cont'd) Based on 100 repetitions: the PNA estimators $\hat{\mu}$ and $\hat{\mu}^*$



3. Estimation in Semiparametric Models

(Hu, Jin and Lagakos, 2005)

Goal:

To estimate $\mu_Z(t) = \mathsf{E}\{X(t) | Z(s), s \leq t\}$ from *iid* $\{X_i, \delta_i : i = 1, \dots n\}$,

$$\mu_Z(t) = G(h(\cdot), \beta; Z(\cdot))$$

Assumptions:

- $X(\cdot)$ and $\delta(\cdot)$ independent
- Periodic Observation: all times of interest $\mathcal{T} = \{t_1, t_2, \dots, t_M\}, 0 < M < \infty; \mathsf{E}\{\delta(t)\} > 0 \text{ for } t \in \mathcal{T}$

3. Estimation in Semiparametric Models

(Hu, Jin and Lagakos, 2005)

Goal:

To estimate $\mu_Z(t) = \mathsf{E}\{X(t) | Z(s), s \leq t\}$ from *iid* $\{X_i, \delta_i : i = 1, \dots n\}$,

$$\mu_Z(t) = G(h(\cdot), \beta; Z(\cdot))$$

Assumptions:

- $X(\cdot)$ and $\delta(\cdot)$ independent
- Periodic Observation: all times of interest $\mathcal{T} = \{t_1, t_2, \dots, t_M\}, 0 < M < \infty; \mathsf{E}\{\delta(t)\} > 0 \text{ for } t \in \mathcal{T}$

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

 $g(\mu_Z(t)) = h(t) + \beta Z(t).$

Illustrative Examples for the Models:

Cox's regression models:

 in survival setting, Cox's proportional hazards model (Cox, 1972)

 $\mu_Z(t) = S_0(t)^{\exp\{\beta Z(t)\}};$

 in counting process setting, conditional cumulative intensity (c.f. Andersen, Borgan, Gill and Keiding, 1991)

 $\mu_Z(t) = \Lambda_0(t) \exp\{\beta Z(t)\};$

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

 $g(\mu_Z(t)) = h(t) + \beta Z(t).$

Illustrative Examples for the Models:

- Cox's regression models:
 - in survival setting, Cox's proportional hazards model (Cox, 1972)

$$\mu_Z(t) = S_0(t)^{\exp\{\beta Z(t)\}};$$

 in counting process setting, conditional cumulative intensity (c.f. Andersen, Borgan, Gill and Keiding, 1991)

$$\mu_Z(t) = \Lambda_0(t) \exp\{\beta Z(t)\};$$

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

$$g(\mu_Z(t)) = h(t) + \beta Z(t).$$

Illustrative Examples for the Models:

• Cox's regression models:

Application: a generalization of the classical model for the surplus process of an insurance company, where

$$X(t) = u + c(t) - \sum_{k=1}^{N(t)} U_k,$$

u = the initial surplus, c(t) = the cumulative premiums upto t, N(t) = the cumulative counts of claims, U_k the size of kth claim

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

 $g(\mu_Z(t)) = h(t) + \beta Z(t).$

Illustrative Examples for the Models:

• Proportional odds models: for binary $X(\cdot)$,

$$logit(\mu_Z(t)) = \beta Z(t) + h(t).$$

Accelerated failure time models:

$$\mu_Z(t) = \mu_0(te^{\beta Z(t)})$$

(cfs, Wei, 1992; Lin, Wei and Ying, 1998)

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

$$g(\mu_Z(t)) = h(t) + \beta Z(t).$$

Illustrative Examples for the Models:

 Generalized linear models for repeated measures: (c.f., Zeger and Diggle, 1994)

$$\mu_Z(t) = \beta Z(t) + \alpha(t)$$

Lin and Carroll (2001) consider the general model. So is it mentioned in Lin and Ying (2001).

Suppose $\mu_Z(t)$ follows, with either $h(\cdot)$ or $g(\cdot)$ unknown,

 $g(\mu_Z(t)) = h(t) + \beta Z(t).$

Illustrative Examples for the Models:

 Generalized autoregressive models: eg, the AR(1) Poisson model (McKenzie, 1988)

$$X(t) = \beta * X(t-1) + W(t),$$

 $\beta * X(t)$ defined as $\sum_{k=1}^{X(t)} B_k(\beta)$ with $\{B_k(\beta) : k = 1, 2, ...\}$ iid binary rvs and $p = \beta$, W(t) a mean h(t) Poisson process independent of X(t-1).

3.2. Esimtation Procedures

3.2.1. With $G(\cdot)$ known and $h(\cdot)$ unknown

Generalized least squares estimation:

Consider to minimize wrt $h(\cdot)$ and β

$$\sum_{i=1}^{n} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\}' \Phi_{i}' W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\}$$

i.e. To jointly solve the GEE type EEs, with \mathbf{Z}_i the $p \times M$ matrix with columns $Z_i(t_1), \ldots, Z_i(t_M)$ and $\dot{\mathbf{G}}_i = diag(\dot{G}(\beta Z_i(t_l) + h(t_l)) : l = 1, \ldots, M)$,

$$\begin{cases} \sum_{i=1}^{n} \mathbf{Z}_{i} \dot{\mathbf{G}}_{i} \Phi_{i}^{'} W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0\\ \sum_{i=1}^{n} \dot{\mathbf{G}}_{i} \Phi_{i}^{'} W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0\end{cases}$$

Some approaches in situations for counting process data use

 $\sum_{i=1}^{n} \mathbf{Z}_{i} \dot{\mathbf{G}}_{i} / \Phi_{i} / \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0$ $\sum_{i=1}^{n} \dot{\mathbf{G}}_{i} / \Phi_{i} / \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0$

i.e. To jointly solve the GEE type EEs, with \mathbf{Z}_i the $p \times M$ matrix with columns $Z_i(t_1), \ldots, Z_i(t_M)$ and $\dot{\mathbf{G}}_i = diag(\dot{G}(\beta Z_i(t_l) + h(t_l)) : l = 1, \ldots, M)$,

$$\begin{cases} \sum_{i=1}^{n} \mathbf{Z}_{i} \dot{\mathbf{G}}_{i} \Phi_{i}^{'} W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0\\ \sum_{i=1}^{n} \dot{\mathbf{G}}_{i} \Phi_{i}^{'} W_{i} \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0 \end{cases}$$

Some approaches in situations for counting process data use

$$\begin{cases} \sum_{i=1}^{n} \mathbf{Z}_{i} \dot{\mathbf{G}}_{i} / \Phi_{i} / \Phi_{i} / \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0\\ \sum_{i=1}^{n} \dot{\mathbf{G}}_{i} / \Phi_{i} / \Phi_{i} / \Phi_{i} \left\{ \underline{X}_{i} - \underline{\mu}_{Z_{i}} \right\} = 0 \end{cases}$$

3.2. Esimtation Procedures

3.2.2. With $G(\cdot)$ unknown and $h(\cdot)$ known

Consider for situations with time-independent Z

$$\tilde{X}(t;\beta) = X(h^{-1}(t-\beta'Z)).$$

Thus

$$\mathsf{E}\{\tilde{X}(t;\beta)\big|Z\} = G(t)$$

- For fixed β , use $\tilde{X}_i(\cdot;\beta)$ to estimate $G(\cdot)$, using the EEs in 3.2.1. - Use the estimated $G(\cdot)$, to estimate β , using the EEs in 3.2.1

4. Situations with Non-Random Missing

In many situations, $X_i(\cdot) \perp \delta_i(\cdot)$. Two special cases are considered.

4.1. Longitudinal Data with Informative Censoring Time:

Motivating Example: (Jin et al, 2004) Quality of life score collected over time, censored at either the time that the study ends or the death time.

Consider the conditional independent model:

 $X_i(\cdot) \perp \delta_i(\cdot) | Z_i(\cdot).$

- Procedures in 3. may be used with some modification
- How to check for the model?

4.2. Incomplete Longitudinal Data due to Quantification Limit of the Assay

Motivating Example: The assay used in ACTG359 to quantify HIV-RNA was Amplicor bioassay, with lower detection limit 500 copies/ml. (LIKE MANY LAB DATA IN PRACTICE.)

- impute 500 for all censored HIV-RNA
- impute all censored HIV-RNA by HIV-RNA copies obtained using the Ultrasensitive bioassay

Schroeder (2004) studies the relationship between HIV-RNA obtained by Amplicor assay and obtained by the Ultrasensitive assay at one time point:

$$X|X^* \sim f(x|X^*).$$

How about to use it to obtain

 $\mathsf{E}\{X_i(t)\big|X_i^*(t)\},\$

and substitute the unobserved $X_i(t)$ with the conditional expectation?

- strong assumption
- not fully utilize the information from the neighborhood

5. Final Remarks

- the Approaches
 - intuitive: "adaptive GEE"
 - easy to implement
- their Extensions
 - more general observation settings
 - spatial data, clustered data

5. Final Remarks

- the Approaches
 - intuitive: "adaptive GEE"
 - easy to implement
- their Extensions
 - more general observation settings
 - spatial data, clustered data