Transitional Analysis of Longitudinal Data

Leilei Zeng

lzeng@sfu.ca

Department of Statistics & Actuarial Science Simon Fraser University

Oct. 14, 2005

OUTLINE

Motivation

- Multivariate/Clustered Multi-State Processes
 - Marginal Methods Based Estimating Functions
 - Simulation, Application and Extensions
 - Design Criteria
- Open Problems in Transitional Analysis
 - Incomplete Multi-State Data
 - Mixed Transitional Models

MOTIVATION

- Longitudinal studies :
 - \implies measurements are taken at a set of planned visits
- Frameworks for Longitudinal Data Analysis (Neuhaus, 1992)
 - Marginal Methods
 - Hierarchical Random-effects Models
 - Transition Models
- Transitional models are appropriate when interest lies in characterizing rates of change in dynamic processes

MOTIVATION

- Interesting problems exist involving two or more correlated processes
 - studying effects of health promotion interventions on knowledge, attitudes, and behavior

examining deterioration of paired organ systems (opthalmology, nephrology, etc.)

when assessing observer agreement on dynamic disease processes

EXAMPLE I

Indonesia Children's Study (Zeger and Liang, 1991)

- 3000 pre-school children were medically examined for up to 7 visits
- presence/absence of xerophthalmia and respiratory infection, and other subject characteristics are determined

Features:

- Children with xerophthalmia are more likely to suffer respiratory infections which in turn deplete stores of Vitamin A and increase the risk of developing xerophthalmia
- Correlated Multivariate Processes

EXAMPLE II

Behavioral Studies of Childhood Smoking

- 100 elementary schools were randomized to an intensive or standard anti-smoking program
- smoking behavior, reasons for smoking, attitudes towards smoking are assessed annually from grade 6 to grade 12

Objective:

- smoking behavior change (e.g. non-smoking to smoking)
- effectiveness of intensive program

Features:

Cluster-randomized Trials

EXAMPLE II

Behavioral Studies of Smoking (some students from school 1)

EXAMPLE III

A Study in Intensive Care Unit

- 120 adults with acute lung injury from ICU were scheduled to have daily chest radiographs
- 3 raters interpreted each radiograph independently to assess the presence of diffuse bilateral infiltrates

Objective:

- Accuracy and reliability of the classification of diffuse bilateral infiltrates
- Assess changes of a rater's interpretations over time, and how these changes are associated with other rater's changes in interpretation

EXAMPLE III

ICU study (10 films from a particular patient)

MOTIVATION

Correlated Multi-state Processes, interest may lie in

- characterizing how these processes change together
- estimating or testing treatment effects on rates of change
- improving efficiency through joint modeling

Options for joint analysis

- random effect models
- predicting one process from another
- Focus: Marginal methods based on estimating functions
 - retains marginal interpretation of covariate effects
 - associations modeled via second order estimating functions
 - robust "sandwich" variance estimates

MULTIPLE MULTI-STATE PROCESSES

For simplicity, we focus on J two-state processes

multivariate longitudinal binary data

Notation

- N individuals
- \bullet t_1, \ldots, t_K scheduled assessment times
- J binary responses measured longitudinally
- $Y_i^{(j)}(t_k) = 1, 2$, state occupied by subject *i* at t_k for process *j*

$$\mathbf{x}_{i}^{(j)}(t_{k}) = (1, x_{i1}^{(j)}(t_{k}), \dots, x_{i, p_{j}-1}^{(j)}(t_{k}))' \text{ and } \mathbf{x}_{i}(t_{k}) = (\mathbf{x}_{i}^{(j)}(t_{k})', j = 1, \cdots, J)'$$

MARGINAL TRANSITION MODELS

Illustrative Assumptions

Assume a first order Markov chain for each response process

 $\mathsf{Pr}(Y^{(j)}(t_{k+1}) \mid Y^{(j)}(t_k), \dots, Y^{(j)}(t_1), \boldsymbol{x}(t_k)) = \mathsf{Pr}(Y^{(j)}(t_{k+1}) \mid Y^{(j)}(t_k), \boldsymbol{x}(t_k))$

Transition probabilities

$$\pi_{\ell}^{(j)}(t_k) = P(Y^{(j)}(t_{k+1}) = 3 - \ell \mid Y^{(j)}(t_k) = \ell, \boldsymbol{x}(t_k))$$

Models for the transition probability

$$\operatorname{logit}(\pi_{\ell}^{(j)}(t_k)) = \boldsymbol{x}^{(j)}(t_k)' \boldsymbol{\beta}_{\ell}^{(j)}$$

•
$$\beta^{(j)} = (\beta_1^{(j)'}, \beta_2^{(j)'})'$$

• $\beta = (\beta^{(1)'}, \dots, \beta^{(J)'})'$

TRANSITIONAL DATA

Data For First Moments

Define event of occurrence of $\ell \to 3 - \ell$ transition

- "At risk" indicator: $\delta_{\ell}^{(j)}(t_k) = I(Y^{(j)}(t_k) = \ell)$
- $\boldsymbol{\delta}(t_k) = (\delta_1^{(1)}(t_k), \delta_2^{(1)}(t_k), \dots, \delta_1^{(J)}(t_k), \delta_2^{(J)}(t_k))$
- Transition indicator: $N_{\ell}^{(j)}(t_k) = I(Y^{(j)}(t_{k+1}) = 3 \ell, Y^{(j)}(t_k) = \ell)$
- Then under a first-order Markov chain

$$\mathsf{E}(N_{\ell}^{(j)}(t_k) \mid \delta_{\ell}^{(j)}(t_k) = 1, \boldsymbol{x}(t_k)) = \pi_{\ell}^{(j)}(t_k),$$

Finally

$$N^{(j)}(t_k) = \sum_{\ell=1,2} \delta^{(j)}_{\ell}(t_k) N^{(j)}_{\ell}(t_k) \qquad \pi^{(j)}(t_k) = \sum_{\ell=1,2} \delta^{(j)}_{\ell}(t_k) \pi^{(j)}_{\ell}(t_k)$$

ASSOCIATION STRUCTURE

Data For Second Moments

		$N_{\ell}^{(1)}(t_k)$	(Process 1)		
		1	0		
$N^{(2)}_{\ell'}(t_k)$ (Process 2)	1	p_{11}	p_{01}		
	0	p_{10}	p_{00}		

- Define conditional odds $ODDS(N_{\ell}^{(j)}(t_k) \mid N_{\ell'}^{(j')}(t_k)) = \frac{P(N_{\ell}^{(j)}(t_k)=1|N_{\ell'}^{(j')}(t_k), \delta_{\ell}^{(j)}(t_k)=\delta_{\ell'}^{(j')}(t_k)=1, \boldsymbol{x}(t_k))}{1-P(N_{\ell}^{(j)}(t_k)=1|N_{\ell'}^{(j')}(t_k), \delta_{\ell}^{(j)}(t_k)=\delta_{\ell'}^{(j')}(t_k)=1, \boldsymbol{x}(t_k))}$
- The associations are measured by pairwise odds ratio:

$$\gamma_{\ell\ell'}^{(jj')}(t_k) = \frac{ODDS(N_{\ell}^{(j)}(t_k) \mid N_{\ell'}^{(j')}(t_k) = 1)}{ODDS(N_{\ell}^{(j)}(t_k) \mid N_{\ell'}^{(j')}(t_k) = 0)}$$

MODELS FOR ASSOCIATION

Regression models:

$$\log(\gamma_{\ell\ell'}^{(jj')}(t_k)) = \boldsymbol{w}_{\ell\ell'}^{(jj')}(t_k)'\boldsymbol{\psi}$$

- $\boldsymbol{w}_{\ell\ell'}^{(jj')}(t_k)$ is a vector of explanatory variables
- $\checkmark \psi$ is a vector of association parameters
- A particular regression model can be

$$\log(\gamma_{\ell\ell'}^{(jj')}(t_k)) = \psi_0 + \psi_1 I(\ell = 1, \ell' = 2) + \psi_2 I(\ell = 2, \ell' = 1) + \psi_3 I(\ell = 2, \ell' = 2)$$

 association among transitions in the "same" direction: γ^(jj')₁₁(t_k) = exp(ψ₀), γ^(jj')₂₂(t_k) = exp(ψ₀ + ψ₃)

 association among transitions in the "opposite" direction: γ^(jj')₁₂(t_k) = exp(ψ₀ + ψ₁), γ^(jj')₂₁(t_k) = exp(ψ₀ + ψ₂)

MODELS FOR ASSOCIATION

Expectations for pairwise products of transition indicators

$$\mathsf{E}\left(N^{(j)}(t_k)N^{(j')}(t_k) \mid \boldsymbol{\delta}(t_k), \boldsymbol{x}(t_k)\right) = \sum_{\ell=1,2} \delta_{\ell}^{(j)}(t_k)\delta_{\ell'}^{(j')}(t_k)\pi_{\ell\ell'}^{(jj')}(t_k)$$

$$\pi_{\ell\ell'}^{(jj')}(t_k) = \Pr(N_{\ell}^{(j)}(t_k) = 1, N_{\ell'}^{(j')}(t_k) = 1 \mid \delta_{\ell}^{(j)}(t_k) = 1, \delta_{\ell'}^{(j')}(t_k) = 1)$$

•
$$\pi_{\ell\ell'}^{(jj')}(t_k)$$
 is a function of $\pi_{\ell}^{(j)}(t_k)$, $\pi_{\ell'}^{(j')}(t_k)$, and $\gamma_{\ell\ell'}^{(jj')}(t_k)$

- Option for Joint estimation
 - GEE2 type of methods (Prentice, 1988)
 - Alternating Logistic Regression (ALR) methods (Carey et al., 1993)

ESTIMATION OF β

Solution Estimating equations for regression parameters β

$$U_1(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_i \sum_{k=1}^{K-1} D(t_k; \boldsymbol{\beta})' V(t_k; \boldsymbol{\beta}, \boldsymbol{\psi})^{-1} (\boldsymbol{N}(t_k) - \boldsymbol{\pi}(t_k)) = 0$$
(1)

•
$$N(t_k) = (N^{(1)}(t_k), \dots, N^{(J)}(t_k))'$$

•
$$\pi(t_k) = (\pi^{(1)}(t_k), \dots, \pi^{(J)}(t_k))'$$

$$V(t_k; \boldsymbol{\beta}, \boldsymbol{\phi})$$
 is a covariance matrix of $N(t_k)$

$$D(t_k; \boldsymbol{\beta}) = \partial \boldsymbol{\pi}(t_k) / \partial \boldsymbol{\beta}'$$

Consistent estimate of β can be obtained

$$\mathsf{E}(N^{(j)}(t_k) - \pi^{(j)}(t_k)) = \mathsf{E}_{\delta(t_k)} \left(\mathsf{E}_{N^{(j)}(t_k)|\delta(t_k)} (N^{(j)}(t_k) - \pi^{(j)}(t_k)) \right)$$

JOINT ESTIMATION

ALR estimating equations for association parameter ψ

$$U_2(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_{i} \sum_{k=1}^{K-1} C(t_k \mid \boldsymbol{\beta}, \boldsymbol{\psi})' S(t_k \mid \boldsymbol{\beta}, \boldsymbol{\psi})^{-1} \boldsymbol{\epsilon}(t_k) = 0.$$
(2)

- Solve $U_1(\beta, \psi)$ and $U_2(\beta, \psi)$ in an alternating fashion
- Model formulation can be generalized to deal with
 - Higher-Order Markov Processes
 - Multi-State Markov Processes

JOINT ESTIMATION

GEE2 type of estimating functions for $\boldsymbol{\zeta} = (\boldsymbol{\beta}', \boldsymbol{\psi}')'$

$$\sum_{i} \sum_{k=1}^{K-1} \left(\frac{\partial (\boldsymbol{\pi}(t_k)', \boldsymbol{\eta}(t_k)')}{\partial \boldsymbol{\zeta}} \right) B^{-1}(t_k) \begin{pmatrix} \boldsymbol{N}(t_k) - \boldsymbol{\pi}(t_k) \\ \boldsymbol{Z}(t_k) - \boldsymbol{\eta}(t_k) \end{pmatrix} = 0,$$

• pairwise products $Z^{(jj')}(t_k) = N^{(j)}(t_k)N^{(j')}(t_k), j < j'$

- $Z(t_k) = (Z^{(jj')}(t_k)', j < j')' \text{ and } \eta(t_k) = (\eta^{(jj')}(t_k)', j < j')'$
- Involves higher-order moments of $N(t_k)$
- Replace with "working" covariance matrix

SIMULATION STUDIES

Design (Indonesian Childrens Study)

- Two processes: absence/presence of xerophthalmia, respiratory infection
- K = 7 assessments
- N = 1000 subjects
- Model configuration

$$\operatorname{logit}(\pi_{\ell}^{(j)}(t_k)) = \beta_{\ell 0}^{(j)} + \beta_{\ell 1}^{(j)} x_{i1} , \qquad j = 1, 2, \ \ell = 1, 2,$$

- $x_{i1} = 1$ if treated, $x_{i1} = 0$ otherwise

Results

- empirical biases are negligible
- empirical coverage probabilities $\approx 95\%$

Asymptotic Relative Efficiency: Joint V.S. Separate

APPLICATION

Analysis

Assume two-state Markov process for each rater's response (first-order reasonable)

$$Y_i^{(j)}(t_k) = \begin{cases} 1, \\ 2, \end{cases}$$

- infiltrates present according to rater j
- , infiltrates not present according to rater j
- PPO/FCIO (lowest ratio of Partial Pressure of Oxygen to Fractional Concentration of Inspired Oxygen)
- VENT (whether they had previous ventilation or not)
- Measure of Agreement in Change:

•
$$\tau_{\ell m} = (\sqrt{\gamma_{\ell m}} - 1)/(\sqrt{\gamma_{\ell m}} + 1)$$

- $\widehat{\tau}_{11} = 0.66,95\% \text{ Cl}(0.57,0.73); \widehat{\tau}_{22} = 0.74,95\% \text{ Cl}(0.59,0.83)$
- $\widehat{\tau}_{12} = -0.60,95\% \text{ Cl}(-0.86,-0.11); \widehat{\tau}_{21} = -0.56,95\% \text{ Cl}(-0.82,-0.10)$

APPLICATION

			Separate Analysis			Joint Analysis		
Raters	Transitions	Covariates	est.	s.e.	p-value	est.	s.e.	p-value
1	$1 \rightarrow 2$	$\operatorname{Intercept}$	-1.153	0.294	< 0.001	-0.886	0.250	< 0.001
		VENT	-1.426	0.538	0.008	-1.545	0.485	0.002
		PPO/FCIO	-0.003	0.002	0.116	-0.004	0.002	0.024
	$2 \rightarrow 1$	Intercent	-1 357	0 409	0.001	-0.916	0.358	0.011
	2 / 1	VENT	-1.064	0.472	0.001 0.024	-0.871	0.360	0.011
		PPO/FCIO	0.005	0.172	0.021 0.077	0.011	0.000	0.010
		110/1010	0.000	0.000	0.011	0.004	0.002	0.150
2	$1 \rightarrow 2$	Intercept	-0.881	0.292	0.003	-0.616	0.263	0.019
		VENT	-1.302	0.490	0.008	-1.407	0.447	0.002
		PPO/FCIO	-0.005	0.002	0.015	-0.006	0.002	0.001
		,						
	$2 \rightarrow 1$	Intercept	-1.305	0.416	0.002	-0.836	0.371	0.024
		VENT	-1.012	0.444	0.023	-0.682	0.359	0.057
		PPO/FCIO	0.005	0.003	0.064	0.003	0.003	0.195
		,						
3	$1 \rightarrow 2$	Intercept	-1.235	0.460	0.007	-0.270	0.331	0.414
		VENT	-1.725	0.766	0.024	-2.267	0.674	0.001
		PPO/FCIO	-0.005	0.003	0.052	-0.009	0.002	< 0.001
		,						
	$2 \rightarrow 1$	Intercept	-3.118	0.463	< 0.001	-2.872	0.435	< 0.001
		VENT	0.125	0.515	0.808	0.409	0.402	0.309
		PPO/FCIO	0.006	0.003	0.028	0.006	0.003	0.051
		,						
Associations	Transitions	Parameters	est.	s.e.	p-value	est.	s.e.	p-value
	$(1 \rightarrow 2, 1 \rightarrow 2)$	$\log(\gamma_{11})$	=	=	=	$\overline{3.156}$	0.293	< 0.001
	$(1 \rightarrow 2, 2 \rightarrow 1)$	$\log(\gamma_{12})$	-	-	-	-2.780	1.191	0.020
	$(2 \rightarrow 1, 1 \rightarrow 2)$	$\log(\gamma_{21})$	-	-	-	-2.526	1.088	0.020
	$(2 \rightarrow 1, 2 \rightarrow 1)$	$\log(\gamma_{12})$	-	-	-	3.761	0.530	< 0.001

Table 1: Results from analyses of the onset and resolution of diffuse bilateral infiltrates in intensive care (Meade et al., 2000)

CLUSTER-RANDOMIZED TRIALS

- With clustered multi-state data
 - *i* indexes clusters, $i = 1, \ldots, I$
 - j indexes subjects
 - $\boldsymbol{x}_{i}^{(j)}(t_{k}) = \boldsymbol{x}_{i}(t_{k})$, covariate vectors fixed over j
 - $\beta_{\ell}^{(j)} = \beta_{\ell}$, common covariate effects
 - Intra-cluster associations in terms of odds ratio $\gamma_{\ell\ell'}^{(jj')}(t_k)$
- Marginal methods for clustered multi-state longitudinal data
 Estimating functions

$$U(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_{i=1}^{I} U_i(\boldsymbol{\beta}, \boldsymbol{\psi}) = \sum_{i=1}^{I} \begin{pmatrix} U_{1i}(\boldsymbol{\beta}, \boldsymbol{\psi}) \\ U_{2i}(\boldsymbol{\beta}, \boldsymbol{\psi}) \end{pmatrix}$$

 Sample size criteria are based on model based variance estimates

DERIVATION OF SAMPLE SIZE CRITERIA

Consider

- **Progressive Process** $(1 \rightarrow 2 \text{ transition only})$
- Constant treatment effect (logit($\pi_{i1}(t_k)$) = $\beta_{0k} + \beta_1 x_{i1}$)
- Constant intra-cluster association ($\gamma_{\ell\ell'}^{(jj')}(t_k) = \gamma_{11}$)
- At the Design Stage
 - $H_0: \beta_1 = \beta_0$ v.s $H_A: \beta_1 = \beta_A$ with level α_1 and power $1 \alpha_2$
 - Formula for minimum required number of clusters

$$I \ge \left(\frac{Z_{\alpha_{1}/2}\sqrt{[\mathcal{I}(\boldsymbol{\zeta})^{-1}]_{K+1}} - Z_{1-\alpha_{2}}\sqrt{[\mathcal{I}(\boldsymbol{\zeta})^{-1}]_{K+1}}}{\beta_{A} - \beta_{0}}\right)^{2}$$

• $Z_{\alpha} = \Phi(1-\alpha)^{-1}$ and $\Phi(\cdot)$ is the cumulative distribution function for a standard normal random variable

GENERAL REMARKS

- Multivariate Transition Models
 - Enable one to model associations between transitions from marginal models with marginal interpretations of covariate effects
 - Result in consistent estimates for both regression and association parameters
 - Increase efficiency compared to separate analyses
 - Can deal with categorical responses and higher order Markov processes
 - Flexible and can be used in a wide variety of settings

Open Problems in Transitional Analysis

Missing Data (monotone, and intermittent)

- Expanding the state space
 - joint models (Albert, 2000)
- Inverse Probability Weighted GEE (Robins et al., 1995)
- Missing (time-dependent) covariates

Variable assessment times

- continuous time processes
- intermittent assessments (panel data)

Mixed Transitional Models for Clustered Longitudinal Data