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MOTIVATION

Longitudinal studies :
=⇒ measurements are taken at a set of planned visits

Frameworks for Longitudinal Data Analysis (Neuhaus, 1992)

Marginal Methods

Hierarchical Random-effects Models

Transition Models

Transitional models are appropriate when interest lies in
characterizing rates of change in dynamic processes

Mild Moderate SevereNormalInfectedNormal
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MOTIVATION

Interesting problems exist involving two or more correlated
processes

studying effects of health promotion interventions on knowledge, attitudes, and
behavior

Knowledge Poor Fair Good Very Good

Behaviour Smoker Quitter

examining deterioration of paired organ systems (opthalmology, nephrology, etc.)

Left Eye Acuity Good Fair Poor

Right Eye Acuity Good Fair Poor

when assessing observer agreement on dynamic disease processes
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EXAMPLE I

Indonesia Children’s Study (Zeger and Liang, 1991)

3000 pre-school children were medically examined for up to 7 visits

presence/absence of xerophthalmia and respiratory infection, and
other subject characteristics are determined

Features:

Children with xerophthalmia are more likely to suffer respiratory
infections which in turn deplete stores of Vitamin A and increase the
risk of developing xerophthalmia

Correlated Multivariate Processes
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EXAMPLE II

Behavioral Studies of Childhood Smoking

100 elementary schools were randomized to an intensive or standard
anti-smoking program

smoking behavior, reasons for smoking, attitudes towards smoking
are assessed annually from grade 6 to grade 12

Objective:

smoking behavior change (e.g. non-smoking to smoking)

effectiveness of intensive program

Features:

Cluster-randomized Trials
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EXAMPLE II

Behavioral Studies of Smoking (some students from school 1)

grade 9 grade 8grade 7

| |||||||

grade 10

Student ID HIGH SCHOOLPRIMARY SCHOOL

non-smoker

non-smoker

non-smoker

non-smoker

smoker

smoker

smoker

non-smoker20012

20011

20010

20008

20009

grade 6 grade 12grade 11 
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EXAMPLE III

A Study in Intensive Care Unit

120 adults with acute lung injury from ICU were scheduled to have
daily chest radiographs

3 raters interpreted each radiograph independently to assess the
presence of diffuse bilateral infiltrates

Objective:

Accuracy and reliability of the classification of diffuse bilateral
infiltrates

Assess changes of a rater’s interpretations over time, and how these
changes are associated with other rater’s changes in interpretation
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EXAMPLE III

ICU study (10 films from a particular patient)

|

Infiltrates Present 

Infiltrates Abseent 

Infiltrates Present 

Infiltrates Abseent 

Intensivist B

Radiologist

Infiltrates Present Infiltrates Present 

Infiltrates Abseent Intensivist A

|

DAY FROM ICU ADMISSION

10987654321
||||||||
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MOTIVATION

Correlated Multi-state Processes, interest may lie in

characterizing how these processes change together

estimating or testing treatment effects on rates of change

improving efficiency through joint modeling

Options for joint analysis

random effect models

predicting one process from another

Focus: Marginal methods based on estimating functions

retains marginal interpretation of covariate effects

associations modeled via second order estimating functions

robust “sandwich” variance estimates
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MULTIPLE MULTI-STATE PROCESSES

For simplicity, we focus on J two-state processes

multivariate longitudinal binary data

2121

Process 1 Process 2

Notation

N individuals

t1, . . . , tK scheduled assessment times

J binary responses measured longitudinally

Y
(j)
i (tk) = 1, 2, state occupied by subject i at tk for process j

x
(j)
i (tk) = (1, x

(j)
i1 (tk), . . . , x

(j)
i,pj−1(tk))′ and xi(tk) = (x

(j)
i (tk)

′
, j = 1, · · · , J)′
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MARGINAL TRANSITION MODELS

Illustrative Assumptions

Assume a first order Markov chain for each response process

Pr(Y (j)(tk+1) | Y (j)(tk), . . . , Y (j)(t1),x(tk)) = Pr(Y (j)(tk+1) | Y (j)(tk),x(tk))

Transition probabilities

π
(j)
` (tk) = P (Y (j)(tk+1) = 3 − ` | Y (j)(tk) = `,x(tk))

Models for the transition probability

logit(π(j)
` (tk)) = x(j)(tk)

′
β

(j)
`

β(j) = (β
(j)
1

′
,β

(j)
2

′
)′

β = (β(1)′, . . . ,β(J)′)′
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TRANSITIONAL DATA

Data For First Moments

Define event of occurrence of ` → 3 − ` transition

“At risk" indicator: δ(j)` (tk) = I(Y (j)(tk) = `)

δ(tk) = (δ
(1)
1 (tk), δ

(1)
2 (tk), . . . , δ

(J)
1 (tk), δ

(J)
2 (tk))

Transition indicator: N(j)
` (tk) = I(Y (j)(tk+1) = 3 − `, Y (j)(tk) = `)

Then under a first-order Markov chain

E(N
(j)
` (tk) | δ(j)` (tk) = 1,x(tk)) = π

(j)
` (tk),

Finally

N(j)(tk) =
X

`=1,2

δ
(j)
` (tk)N

(j)
` (tk) π(j)(tk) =

X

`=1,2

δ
(j)
` (tk)π

(j)
` (tk)
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ASSOCIATION STRUCTURE

Data For Second Moments

N
(1)
` (tk) (Process 1)

1 0

N
(2)
`′

(tk) (Process 2) 1 p11 p01

0 p10 p00

Define conditional odds

ODDS(N
(j)
` (tk) | N(j′)

`′
(tk)) =

P (N
(j)
`

(tk)=1|N
(j′)

`′
(tk),δ

(j)
`

(tk)=δ
(j′)

`′
(tk)=1,x(tk))

1−P (N
(j)
`

(tk)=1|N
(j′)

`′
(tk),δ

(j)
`

(tk)=δ
(j′)

`′
(tk)=1,x(tk))

The associations are measured by pairwise odds ratio:

γ
(jj′)
``′

(tk) =
ODDS(N

(j)
` (tk) | N(j′)

`′
(tk) = 1)

ODDS(N
(j)
` (tk) | N(j′)

`′
(tk) = 0)
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MODELS FOR ASSOCIATION

Regression models:

log(γ
(jj′)
``′

(tk)) = w
(jj′)
``′

(tk)′ψ

w
(jj′)
``′

(tk) is a vector of explanatory variables

ψ is a vector of association parameters

A particular regression model can be

log(γ
(jj′)
``′

(tk)) = ψ0 + ψ1I(` = 1, `′ = 2) + ψ2I(` = 2, `′ = 1) + ψ3I(` = 2, `′ = 2)

association among transitions in the “same” direction:

γ
(jj′)
11 (tk) = exp(ψ0), γ

(jj′)
22 (tk) = exp(ψ0 + ψ3)

association among transitions in the “opposite” direction:

γ
(jj′)
12 (tk) = exp(ψ0 + ψ1), γ

(jj′)
21 (tk) = exp(ψ0 + ψ2)
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MODELS FOR ASSOCIATION

Expectations for pairwise products of transition indicators

E
“
N(j)(tk)N(j′)(tk) | δ(tk),x(tk)

”
=

X

`=1,2

δ
(j)
` (tk)δ

(j′)
`′

(tk)π
(jj′)
``′

(tk)

π
(jj′)
``′

(tk) = Pr(N(j)
` (tk) = 1, N

(j′)
`′

(tk) = 1 | δ(j)` (tk) = 1, δ
(j′)
`′

(tk) = 1)

π
(jj′)
``′

(tk) is a function of π(j)
` (tk), π(j′)

`′
(tk), and γ(jj′)

``′
(tk)

Option for Joint estimation

GEE2 type of methods (Prentice, 1988)

Alternating Logistic Regression (ALR) methods (Carey et al., 1993)
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ESTIMATION OF β

Estimating equations for regression parameters β

U1(β,ψ) =
X

i

K−1X

k=1

D(tk;β)′V (tk;β,ψ)−1(N(tk) −π(tk)) = 0 (1)

N(tk) = (N(1)(tk), . . . , N (J)(tk))′

π(tk) = (π(1)(tk), . . . , π(J)(tk))′

V (tk;β,φ) is a covariance matrix ofN(tk)

D(tk;β) = ∂π(tk)/∂β′

Consistent estimate of β can be obtained

E(N(j)(tk) − π(j)(tk)) = Eδ(tk)

“
EN(j)(tk)|δ(tk)(N

(j)(tk) − π(j)(tk))
”
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JOINT ESTIMATION

ALR estimating equations for association parameter ψ

U2(β,ψ) =
X

i

K−1X

k=1

C(tk | β,ψ)′S(tk | β,ψ)−1ε(tk) = 0. (2)

ξ(jj′)(tk) = E(N(j)(tk) | N(j′)(tk), δ(tk),x(tk))

ε(tk) = (ε(jj′)(tk), j < j′)′ with ε(jj′)(tk) = N(j)(tk) − ξ(jj′)(tk)

C(tk | β,ψ) = ∂ξ(tk)/∂ψ′

S(tk | β,ψ) = diag{ξ(jj′)(tk)(1 − ξ(jj′)(tk)), j < j′}

Solve U1(β,ψ) and U2(β,ψ) in an alternating fashion

Model formulation can be generalized to deal with

Higher-Order Markov Processes

Multi-State Markov Processes
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JOINT ESTIMATION

GEE2 type of estimating functions for ζ = (β′,ψ′)′

X

i

K−1X

k=1

„
∂(π(tk)′,η(tk)′)

∂ζ

«
B−1(tk)

0
@ N(tk) − π(tk)

Z(tk) − η(tk)

1
A = 0,

pairwise products Z(jj′)(tk) = N(j)(tk)N(j′)(tk), j < j′

η(jj′) = E(Z(jj′)(tk) | δ(tk),x(tk))

Z(tk) = (Z(jj′)(tk)
′
, j < j′)′ and η(tk) = (η(jj′)(tk)

′
, j < j′)′

B(tk) = COV (N(tk),Z(tk) | δ(tk),x(tk))

Involves higher-order moments ofN(tk)

Replace with “working” covariance matrix
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SIMULATION STUDIES

Design (Indonesian Childrens Study)

Two processes: absence/presence of xerophthalmia, respiratory infection

K = 7 assessments

N = 1000 subjects

Model configuration

logit(π(j)
` (tk)) = β

(j)
`0 + β

(j)
`1 xi1 , j = 1, 2, ` = 1, 2,

xi1 = 1 if treated, xi1 = 0 otherwise

log(γ
(jj′)
``′

(tk)) = ψ0+ψ1I(` = 1, `′ = 2)+ψ2I(` = 2, `′ = 1)+ψ3I(` = 2, `′ = 2)

Results

empirical biases are negligible

empirical coverage probabilities ≈ 95%
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Asymptotic Relative Efficiency: Joint V.S. Separate
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PROCESS 2

γo = 0.25
γo = 0.50
γo = 0.75
γo = 1.00

baseline rates treatment

Process 1 → 2 2 → 1 1 → 2 2 → 1

1 50% 50% logit(0.75) logit(1.33)

2 25% 50% logit(0.75) logit(1.33)
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APPLICATION

Analysis

Assume two-state Markov process for each rater’s response (first-order
reasonable)

Y
(j)
i (tk) =

8
<
:

1, infiltrates present according to rater j

2, infiltrates not present according to rater j

PPO/FCIO (lowest ratio of Partial Pressure of Oxygen to Fractional Concentration
of Inspired Oxygen)

VENT (whether they had previous ventilation or not)

Measure of Agreement in Change:
τ`m = (

√
γ`m − 1)/(

√
γ`m + 1)

bτ11 = 0.66, 95% CI(0.57, 0.73); bτ22 = 0.74, 95% CI(0.59, 0.83)

bτ12 = −0.60, 95% CI(−0.86,−0.11); bτ21 = −0.56, 95% CI(−0.82,−0.10)
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APPLICATIONTable 1: Results from analyses of the onset and resolution of di�use bilateral in�ltrates in intensive care(Meade et al., 2000) Separate Analysis Joint AnalysisRaters Transitions Covariates est. s.e. p-value est. s.e. p-value1 1! 2 Intercept -1.153 0.294 < 0:001 -0.886 0.250 < 0:001VENT -1.426 0.538 0.008 -1.545 0.485 0.002PPO/FCIO -0.003 0.002 0.116 -0.004 0.002 0.0242! 1 Intercept -1.357 0.409 0.001 -0.916 0.358 0.011VENT -1.064 0.472 0.024 -0.871 0.360 0.016PPO/FCIO 0.005 0.003 0.077 0.004 0.002 0.1362 1! 2 Intercept -0.881 0.292 0.003 -0.616 0.263 0.019VENT -1.302 0.490 0.008 -1.407 0.447 0.002PPO/FCIO -0.005 0.002 0.015 -0.006 0.002 0.0012! 1 Intercept -1.305 0.416 0.002 -0.836 0.371 0.024VENT -1.012 0.444 0.023 -0.682 0.359 0.057PPO/FCIO 0.005 0.003 0.064 0.003 0.003 0.1953 1! 2 Intercept -1.235 0.460 0.007 -0.270 0.331 0.414VENT -1.725 0.766 0.024 -2.267 0.674 0.001PPO/FCIO -0.005 0.003 0.052 -0.009 0.002 < 0:0012! 1 Intercept -3.118 0.463 < 0:001 -2.872 0.435 < 0:001VENT 0.125 0.515 0.808 0.409 0.402 0.309PPO/FCIO 0.006 0.003 0.028 0.006 0.003 0.051Associations Transitions Parameters est. s.e. p-value est. s.e. p-value(1! 2, 1! 2) log(11) - - - 3.156 0.293 < 0:001(1! 2, 2! 1) log(12) - - - -2.780 1.191 0.020(2! 1, 1! 2) log(21) - - - -2.526 1.088 0.020(2! 1, 2! 1) log(12) - - - 3.761 0.530 < 0:001
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CLUSTER-RANDOMIZED TRIALS

With clustered multi-state data

i indexes clusters, i = 1, . . . , I

j indexes subjects

x
(j)
i (tk) = xi(tk), covariate vectors fixed over j

β
(j)
` = β`, common covariate effects

Intra-cluster associations in terms of odds ratio γ
(jj′)
``′ (tk)

Marginal methods for clustered multi-state longitudinal data
Estimating functions

U(β,ψ) =
IX

i=1

Ui(β,ψ =
IX

i=1

0
@ U1i(β,ψ)

U2i(β,ψ)

1
A

Sample size criteria are based on model based variance
estimates
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DERIVATION OF SAMPLE SIZE CRITERIA

Consider

Progressive Process (1 → 2 transition only)

Constant treatment effect (logit(πi1(tk)) = β0k + β1xi1)

Constant intra-cluster association (γ(jj′)
``′

(tk) = γ11)

At the Design Stage

H0 : β1 = β0 v.s HA : β1 = βA with level α1 and power 1 − α2

Formula for minimum required number of clusters

I ≥

0
B@
Zα1/2

q
[I(ζ)−1]K+1|β1=β0

− Z1−α2

q
[I(ζ)−1]K+1|β1=βA

βA − β0

1
CA

2

I(ζ) = I(β,ψ) = E(Ui(β, γ)Ui(β, γ)
′)

Zα = Φ(1 − α)−1 and Φ(·) is the cumulative distribution function for a standard

normal random variable
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GENERAL REMARKS

Multivariate Transition Models

Enable one to model associations between transitions from
marginal models with marginal interpretations of covariate effects

Result in consistent estimates for both regression and association
parameters

Increase efficiency compared to separate analyses

Can deal with categorical responses and higher order Markov
processes

Flexible and can be used in a wide variety of settings
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Open Problems in Transitional Analysis

Missing Data (monotone, and intermittent)

Expanding the state space

joint models ( Albert, 2000)

Z
(j)
i (tk) = Y

(j)
i (tk) if observed, or Z(j)

i (tk) = M + 1 if missing

Inverse Probability Weighted GEE (Robins et al., 1995)

Missing (time-dependent) covariates

Variable assessment times

continuous time processes

intermittent assessments (panel data)

Mixed Transitional Models for Clustered Longitudinal Data
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