
Meditations on results of Calta

and McMullen

John Smillie

January 8, 2006



Joint work with Kariane Calta.

Billiards in planar billiard tables provide appeal-

ing examples in dynamical systems.

1



The article:

Zemljakov-Katok “Topological transitivity of

billiards in polygons” Mat. Zametki 18 n. 2

291-300 1975

relates the billiard flow to translation surfaces.

A translation surface is a compact surface which

is obtained by gluing together polygons in the

plane so that the gluing maps are restrictions

of translations.

We obtain singular points when the sum of the

angles at a point is greater than 2π.
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An affine diffeomorphism of a translation sur-

face is a diffeomorphism for which the deriva-

tive is constant.

Two translation surfaces are affinely equivalent

if there is an affine diffeomorphism between

them.

Let Aff(S) be the group of orientation pre-

serving affine automorphisms of S.

d : Aff(S) → SL(2, R)

The image of d is the Veech group, V (S).
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Translation surfaces arise in topology.

An affine automorphism f : S → S for which

df is hyperbolic is a pseudo-Anosov diffeomor-

phism.

Thurston shows that every pseudo-Anosov home-

omorphism of a surface can be represented as

an affine diffeomorphism of some translation

structure.
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Translation structures arise in complex

analysis.

A translation structure on a surface gives rise

to a conformal structure.

If we start with a surface with a conformal then

the compatible translation structures are rep-

resented by holomorphic abelian differentials.
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The collection of translation structures on a

given surface with a prescribed collection of

singular points forms a topological space called

a stratum.

Notation for strata:

H(n1, . . . nj) where the ns correspond to excess

angle at singular points

Examples:

H(), translation structures on the torus (with

no singular points)

H(2), translation structures on surfaces of genus

two with one singular point

H(1,1), translation structures on surfaces of

genus two with two singular points
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There is a natural action of SL(2, R) on a stra-

tum so that the orbits of this action are the

affine equivalence classes.

Given S and α ∈ SL(2, R) there is a translation

structure αS and an affine map f : S → αS

with Df = α.
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The fact that any two translation structures on

the torus of the same area are affinely equiva-

lent means that the SL(2, R) action on H() is

transitive.

In particular H() = SL(2, R)/SL(2, Z) where

SL(2, Z) = Aff(T2).
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Renormalization principle

Natural questions about the dynamics and ge-

ometry of S translate into questions about the

behavior of the SL(2, R) orbit of S in its stra-

tum.

Example: The Masur criterion for unique er-

godicity of the vertical flow in S involves the

behavior of gt(S) where:

gt =

[
et/2 0
0 e−t/2

]
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Why are billiard trajectories in the square easier

to understand than billiard trajectories in most

other rational polygons?

Because the action of the action of SL(2, R)

on H() = SL(2, R)/Aff(T2) is understood.

The key point is that Aff(T2) = SL(2, Z) maps

to a lattice in SL(2, R).
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For which translation structures T is the Veech

group a lattice in SL(2, R)?

Such T are called lattice surfaces.

Gutkin studied translation structures T for which

V (T ) ⊂ SL(2, Z).

Veech discovered examples of translation struc-

tures T for which V (T ) is a lattice contained in

SL(2, K) ⊂ SL(2, R) for certain number fields

K.
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Lattice surfaces are examples of exceptional

surfaces in that their SL(2, R) orbits are not

dense in their stratum component.

Properties of exceptional surfaces are presum-

ably not the same as those of other surfaces

in their stratum component.

If we want to understand properties of one par-

ticular billiard table “almost everywhere” re-

sults are not so useful.

It is an important and interesting question to

find all exceptional surfaces.
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The answer is not known in general but Calta

and McMullen answer this question in genus

two.

McMullen gives an answer in terms of real mul-

tiplication on Jacobians of surfaces. McMullen’s

condition makes sense in higher genus and de-

gree but the corresponding set is not SL(2, R)

invariant in these cases.

Calta gives an answer in terms of Property X.

Calta’s condition makes sense in higher genus

and degree and the corresponding set is SL(2, R)

invariant in these cases.
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We begin by describing Property X.

The Sah-Arnoux-Fathi (SAF) invariant is of

an interval exchange transformation takes its

values in R ∧Q R.

If the interval exchange takes intervals of lengths

`1, . . . `n and translates them by distances t1, . . . tn

then the value of the invariant is
n∑

j=1

`j ∧ tj.

If the interval exchange is periodic then the

invariant is zero.
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If S has a cylinder decomposition in a partic-

ular direction then the SAF invariant in that

direction is zero.

We say that a direction is algebraically periodic

if the SAF invariant in that direction vanishes.

Unlike the property of having an actual cylin-

der decomposition the property of being alge-

braically periodic is scissors congruence invari-

ant.
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Let us say that two translation structures S

and T are scissors congruent if there is a polyg-

onal decomposition of S so into polygons P1 . . . Pn

so that we can reassemble them to create T .

We insist that edges match with entire edges

when we reassemble.

Consider the result of gluing two isogenous tori

together along a slit.
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Theorem 1. If S has three algebraically peri-

odic directions then it has infinitely many.

If the directions with slope 0, 1 and ∞ are

algebraically periodic then there is a field K

so that the collection of algebraically periodic

directions are exactly those with slopes in K.

K is a number field with deg(K) ≤ genus(S).

If S has three algebraically periodic directions

we call S algebraically periodic and we call K

its periodic direction field.
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Genus two situation.

There are two genus two strata: H(2) and

H(1,1).

In the first case all algebraically periodic sur-

faces are lattice surfaces. The periodic di-

rection field can either be the rationals or a

quadratic field.

In the second case the algebraically periodic

surfaces give closed, proper, SL(2, R) invari-

ant submanifolds of the strata. All exceptional

surfaces are contained in these closed subets.
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Here is a family of examples in higher genus.

Theorem 2. If a translation surface S has an

orientation preserving pseudo-Anosov automor-

phism with expansion constant λ then S is

completely algebraically periodic and its peri-

odic direction field is Q[λ + λ−1].

The field Q[λ+λ−1] is called the trace field of

the pseudo-Anosov. Gutkin-Judge and Kenyon-

Smillie show that for an S with a pseudo-Anosov

automorphism the trace field is the holonomy

field of the surface. This means that we can

assume that all coordinates of all saddle con-

nections lie in this field.

Corollary 3. If S is a lattice surface then S is

algebraically periodic.
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What we see is a connection between excep-

tional surfaces and algebraically periodic sur-

faces in the case of lattice surfaces and in

genus two.

The remainder of the talk is about algebraically

periodic surfaces.

We hope to be able to announce some results

about the connection between the two proper-

ties soon.
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It is not known which fields can be obtained as

trace fields of pseudo-Anosovs but we have:

Theorem 4. Every number field is the alge-

braic periodic direction field for some transla-

tion surface.

We can be quite explicit in the construction

of these examples. We can also realize them

as translation structures coming from billiard

tables. (L-shaped tables are a special case.)

21



Let K ⊂ R be a number field. We can write

K = Q(λ) where λ > 0 is an algebraic number

with minimal polynomial

p(x) = xn + an−1xn−1 + · · ·+ a1x + a0.

Let

q(x) =
p(x)

(x− λ)
= bn−1xn−1+bn−2xn−2+· · ·+b1x+b0.

Let αj = λj−1 and let βj =
bj−1
q′(λ).

Construct rectangles Rj with height αj and

widths |βj| for j = 1 . . . n.

Glue together those rectangles Rj for which

βj > 0. Excise rectangles Rj with βj < 0.

The result is a planar billiard table whose trans-

lation surface has the required property.
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How do we recognize algebraically periodic sur-

faces and their direction fields?

Consider a translation surface S with a trian-

gulation dividing the surface into triangles ∆j.

Say that vj and wj are two of the sides of ∆j.

Say that vj =

[
aj
cj

]
and that wj =

[
bj
dj

]
.

Let us assume that all these numbers are con-

tained in a number field L which we can assume

to be Galois.
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Theorem 5. S is algebraically periodic if and

only if the following equations hold for any σ ∈
Gal(L).

∑
j

ajσ(dj)− cjσ(bj) =

∑
j

−bjσ(cj) + djσ(aj) (1)

∑
j

bjσ(dj)− djσ(bj) =

∑
j

−cjσ(aj)− ajσ(cj) = 0 (2)

The direction field K is the subfield of L fixed

by the collection of σ’s for which
∑

j ajσ(dj)−
cjσ(bj) 6= 0.
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The homological affine group of T , HAG(T), is

a subgroup of SL(2, R) that contains the Veech

group but is easier to calculate.

The homological affine group consists of ma-

trices α ∈ SL(2, R) for which there is an A such

that:

H1(S, Q)
h−→ R2

↓ A ↓ α

H1(S, Q)
h−→ R2

where h is the holonomy homorphism and A

preserves the intersection number of homology

classes.
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The periodic direction field of S is contained

in the holonomy field of S. If these fields are

equal we say that S is completely algebraically

periodic or that S satisfies Property X.

Connection with McMullen’s approach:

Theorem 6. If S is completely algebraically pe-

riodic then HAG(S) = SL(2, K) where K is the

periodic direction field.
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All real fields of degree 2 are totally real. For

fields of higher degree this need not be the

case.

If S has a parabolic automorphism then S has

a special type of cylinder decomposition. In

particular S has an algebraically periodic direc-

tion.

Theorem 7. If S has a parabolic automor-

phism and a second algebraically periodic di-

rection then S is algebraically periodic and the

periodic direction field is totally real.

Related result of Hubert-Lanneau.
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Theorem 8. If S is a connected sum of isoge-

nous tori then S is algebraically periodic and

the periodic direction field is totally real. Con-

versely if K is totally real then there is a con-

nected sum of isogenous tori with direction

field K.
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All results come from an analysis of the J in-

variant:

J(S) ∈ R2 ∧Q R2.

In terms of a triangulation we have:

J(S) =
∑
j

[
aj
cj

]
∧

[
bj
dj

]

• J is independent of the triangulation.

• J is a scissors congruence invariant.

• J is additive for connected sums.
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• J determines the algebraically periodic di-
rections.

• In interesting cases J(S) ∈ L2 ∧Q L2 for
some number field L.

• SL(2, L) acts on L2 and hence on L2∧QL2.

• We define a Iso(J) ⊂ SL(2, L) consisting
of matrices that preserve J.

• We analyze L2 ∧Q L2 as a SL(2, L) module
using Galois automorphisms or field em-
beddings.

This gives Q linear equations that deter-
mine Iso(J).

• HAG(S) ⊂ Iso(J(S))
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Where does total reality come from?

For distinct field embeddings we have

∑
j

σ(aj)τ(dj)− σ(cj)τ(bj) = 0

If K has a complex embedding σ then take

τ = σ̄.

Geometric hypotheses mean that J has the

form

J(S) =
∑
j

[
aj
0

]
∧

[
0
aj

]

with
∑

aj = 1.
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Putting these together we get:

∑
j

σ(aj)σ̄(aj) =
∑
j

|σ(aj)|2 = 0

so all σ(aj) are zero hence all aj are zero. But

this contradicts
∑

aj = 1.
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