On Symmetric Stable Processes

Zhen-Qing Chen

University of Washington, Seattle

Symmetric α -Stable Process

is a Lévy process Z on \mathbb{R}^n with

$$\mathbf{E} e^{i\xi \cdot (Z_t - Z_0)} = e^{-t|\xi|^{\alpha}},$$

where $\alpha \in (0, 2)$. Unlike Brownian motion, $t \mapsto Z_t(\omega)$ is discontinuous and Z_t has heavy tails:

$$\mathbf{P}(|Z_t| > \lambda) \approx \lambda^{-\alpha}.$$

• $\mathbf{E}|Z_t|^p < \infty$ if and only if $p < \alpha$.

• Self-similarity: $\{\lambda^{-1/\alpha}(Z_{\lambda t} - Z_0), t \ge 0\}$ has the same distribution as $\{Z_t - Z_0, t \ge 0\}$.

Generator

• Generator:
$$\Delta^{\alpha/2} := -(-\Delta)^{\alpha/2}$$
.

$$\begin{aligned} &(\Delta)^{\alpha/2} f(x) \\ &= \int_{\mathbf{R}^n} e^{-i\xi \cdot x} |\xi|^{\alpha} \, \widehat{f}(\xi) \, d\xi \\ &= \lim_{\delta \downarrow 0} \int_{|y-x| > \delta} (f(y) - f(x)) \frac{c(n,\alpha)}{|x-y|^{n+\alpha}} dy \\ &= c(n,\alpha) \int_{\mathbf{R}^n} \left(f(y) - f(x) - \nabla f(x) \cdot (y-x) \mathbf{1}_{\{|y-x| \le 1\}} \right) \\ &\quad \frac{c(n,\alpha)}{|x-y|^{n+\alpha}} dy. \end{aligned}$$

Construction of Stable Processes

Let *B* be BM(\mathbb{R}^n) and *Y* be an independent ($\alpha/2$)-subordinator on \mathbb{R}^+ :

$$\mathbf{E} \, e^{-\lambda Y_t} = e^{-t\lambda^{\alpha/2}}$$

Then $Z_t := B_{Y_t}$ is a symmetric α -stable process on \mathbb{R}^n .

In contrast to the Brownian motion, the coordinate processes of symmetric α -stable process in \mathbb{R}^n are 1-dimensional symmetric α -stable processes but are not independent each other.

Transience and Recurrence

When n = 1, symmetric α -stable process Z is pointwise recurrent when $\alpha > 1$, neighborhood recurrent when $\alpha = 1$, and is transient when $\alpha < 1$.

When $n \ge 2$, Z is always transient.

• Transition density function p(t, x, y) estimate:

$$p(t, x, y) \asymp \min\left\{t^{-n/\alpha}, \frac{t}{|x - y|^{n+\alpha}}\right\}$$

Here $f \simeq g$ means f/g is bounded between two positive constants.

Dirichlet from

The Dirichlet form $(\mathcal{E}, \mathcal{F})$ of Z is given by $\mathcal{F} = \text{Dom}(\sqrt{-\mathcal{L}})$ and

$$\mathcal{E}(u,v) = (\sqrt{-\mathcal{L}}u, \sqrt{-\mathcal{L}v})_{L^2(\mathbf{R}^n, dx)}$$
$$= \frac{c(n,\alpha)}{2} \int_{\mathbf{R}^n \times \mathbf{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + \alpha}} dx dy.$$

In fact,

$$\mathcal{F} = \{ u \in L^2(\mathbf{R}^n, dx) : \mathcal{E}(u, u) < \infty \} = W^{\alpha/2, 2}(\mathbf{R}^n).$$

Stable process in an open subset

Let *D* be an open subset of \mathbb{R}^n and define $\tau_D = \inf\{t > 0 : Z_t \notin D\}.$

Typically, $Z_{\tau_D} \in \mathbf{R}^n \setminus \overline{D}$.

Green function: $\int_D G_D(x,y)f(y)dy = \mathbf{E}_x \int_0^{\tau_D} f(Z_s)ds$.

Green Function Estimates: C-Song, Kulczcki

$$G_D(x,y) \asymp \min\left\{\frac{1}{|x-y|^{n-\alpha}}, \frac{\delta_D(x)^{\alpha/2}\delta_D(y)^{\alpha/2}}{|x-y|^n}\right\},$$

where $\delta_D(x) = \operatorname{dist}(x, D^c).$

Censored stable process

A censored α -stable process Y in a domain D can be obtained from a symmetric α -stable process Z by killing it at the time when it jumps outside D, and then starting an independent copy of Z from the point where the jump originated. The procedure is repeated for the new process, and then by induction infinitely (countably) many times.

Equivalent characterization: Y has Dirichlet form

$$\begin{aligned} \mathcal{E}(u,v) &= c \int_{D \times D} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n + \alpha}} dx dy, \\ \mathcal{F} &= \overline{C_c^{\infty}(D)}^{\sqrt{\mathcal{E}_1}} = W_0^{\alpha/2,2}(D). \end{aligned}$$

Boundary behavior

 \bullet Does the censored process approach the boundary of D in a finite time?

Example: $D = (0,1) \setminus K$, where K is the Cantor set in (0,1).

Definition. A set $D \subset \mathbb{R}^n$ is called an *n*-set if there is c > 0 such that

 $|B(x,r)| \ge cr^n$ for every $x \in D$ and r < 1.

Let $\operatorname{Cap}_{\alpha}$ denote the capacity induced by the symmetric α -stable process in \mathbb{R}^n , or equivalently, by Riesz potential kernel $|x-y|^{\alpha-n}$.

Boundary behavior (continued)

Theorem. (Bogdan-Burdzy-C.)

Let *D* be a bounded open *n*-set in \mathbb{R}^n . Then the censored α -stable process in *D* is recurrent if and only if $\operatorname{Cap}_{\alpha}(\partial D) = 0$. When $\operatorname{Cap}_{\alpha}(\partial D) > 0$,

 $\mathbf{P}_x(\zeta < \infty \text{ and } Y_{\zeta -} \in \partial D) = 1$ for every $x \in D$.

Corollary. If the boundary of a bounded *n*-set *D* has (locally) finite and positive *d*-dimensional Hausdorff measure. Then *Y* is recurrent if and only if $\alpha \leq n - d$. When $\alpha > n - d$,

 $\mathbf{P}_x(\zeta < \infty \text{ and } Y_{\zeta -} \in \partial D) = 1$ for every $x \in D$.

Consider the reflected Dirichlet space $(\mathcal{E}, \mathcal{F}^{ref})$ of *Y*, where

$$\mathcal{F}^{\mathrm{ref}} = \{ u \in L^2(D, dx) : \mathcal{E}(u, u) < \infty \} = W^{\alpha/2, 2}(D).$$

When D is an n-open set, $(\mathcal{E}, \mathcal{F}^{ref})$ is a regular Dirichlet space on \overline{D} and so there is an associated Hunt process Y^* starting from quasi-every point in \overline{D} .

Fact: *Y* is a subprocess of Y^* killed upon hitting ∂D .

So the above boundary behavior question is equivalent to whether $Y = Y^*$ or not.

Implication: $Y = Y^*$ if and only if $W_0^{\alpha/2,2}(D) = W^{\alpha/2,2}(D)$, yielding new results on Besov spaces.

Boundary Harnack principle

Theorem. (Bogdan-Burdzy-C.)

BHP holds for censored α -stable processes in $C^{1,1}$ -smooth open sets with $\alpha > 1$. The BHP asserts that harmonic functions that vanish on the same part of the boundary decay at the same rate, which is $\delta_D(x)^{\alpha-1}$.

Green function estimate. (C-Kim)

Let G_D denote the Green function of censored α -stable process in a bounded $C^{1,1}$ -smooth open set D with $\alpha > 1$. Then

$$G_D(x,y) \asymp \min\left\{\frac{1}{|x-y|^{n-\alpha}}, \frac{\delta_D(x)^{\alpha-1}\delta_D(y)^{\alpha-1}}{|x-y|^{n+\alpha-2}}\right\}.$$

d-set

A subset $F \subset \mathbb{R}^n$ is called a *d*-set, where $0 < d \le n$, if there is a positive Borel measure μ on F and $c_1 \ge 1$

 $c_1^{-1} r^d \le \mu(B(x, r)) \le c_1 r^d$ for all $x \in F$ and $0 < r \le 1$.

Such a measure μ is called a *d*-measure on *F*.

The notion of *d*-set arises in the theory of function spaces and in fractal geometry. Geometrically self-similar sets are typical examples of *d*-sets. For example, any Lipschitz domain in \mathbb{R}^n with a uniform Lipschitz constant is an *n*-set, Sierpinski gasket and Sierpinski carpet in \mathbb{R}^2 are *d*-sets with $d = \log 3/\log 2$ and $d = \log 8/\log 3$, respectively.

Dirichlet form on d-set

Let $F \subset \mathbf{R}^n$ be a closed *d*-set with the property that

 $\mu(B(x,r)) \leq c_1 r^d$ for every $x \in F$ and r > 0.

Let

$$J(x,y) = \frac{c(x,y)}{|x-y|^{d+\alpha}} \quad \text{for } x, y \in F,$$

where c(x, y) is a symmetric function on $F \times F$ such that

 $c_2^{-1} \le c(x,y) \le c_2$ for μ -a.e. $x, y \in F$.

Define

$$\begin{aligned} \mathcal{E}(u,v) &= \int_{F \times F} (u(x) - u(y))^2 J(x,y) \mu(dx) \mu(dy) \\ \mathcal{F} &= \left\{ u \in L^2(F,\mu) : \, \mathcal{E}(u,u) < \infty \right\}. \end{aligned}$$

Neumann heat kernel estimates

Theorem. (C.-Kumagai) For $0 < \alpha < 2$, $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet form on F. There is a Feller process Y^* on F associated with it $(\mathcal{E}, \mathcal{F})$ on $L^2(F, \mu)$ and Y^* has a Hölder continuous transition density function p(t, x, y). Consequently, Y^* can be refined to start from every point in F. Moreover,

$$p(t, x, y) \asymp \min\left\{t^{-d/\alpha}, \frac{t}{|x - y|^{d + \alpha}}\right\}$$

for $t \leq 1$ and $x, y \in F$, with the multiplicative constants depending only on n, d, α , and the constants c_1 and c_2 .

Uniform Hausdorff dimensional result

Assume that $\alpha \leq d$.

Theorem. (Benjamini-C.-Rohde) (i) For every $x \in F$,

 $\mathbf{P}_x (\dim_H Y^*(E) = \alpha \dim_H E \text{ for all Borel sets } E \subset \mathbf{R}_+) = 1.$

(ii) Assume F is the closure of a bounded open n-set in \mathbb{R}^n . Let $S(\omega) = \{t \ge 0 : Y^*(\omega) \in \partial D\}$ be boundary occupation time set. Then

$$\dim_H S(\omega) = \max\left\{1 - \frac{n - \dim_H \partial D}{\alpha}, 0\right\} \qquad \mathbf{P}_x\text{-a.s.}$$

for every $x \in \overline{D}$.

(continued)

(iii) Under the condition of (ii) with $\alpha \leq n$, $\dim_H Y^*(S(\omega)) = \max \{ \alpha + \dim_H \partial D - n, 0 \}$ \mathbf{P}_x -a.s. for every $x \in \overline{D}$.

Similar results hold for normally reflected Brownian motions.

Jump processes of mixed type

A typical example is the symmetric jump process with jumping intensity

$$J(x,y) = \int_{\alpha_1}^{\alpha_2} \frac{c(\alpha, x, y)}{|x - y|^{d + \alpha}} \,\nu(d\alpha),$$

where ν is a probability measure on $[\alpha_1, \alpha_2] \subset (0, 2)$, and $c(\alpha, x, y)$ is a jointly measurable function that is symmetric in (x, y) and is bounded between two positive constants. Rewrite the above jumping intensity J as

$$J(x,y) = \frac{c(x,y)}{|x-y|^d\phi(|x-y|)}$$

for every $(x, y) \in F \times F$

with $\phi(r) = 1 / \int_{\alpha_1}^{\alpha_2} r^{-\alpha} \nu(d\alpha)$.

Heat kernel estimate

Theorem. (C.-Kumagai)

Assume that *F* is a closed global *d*-set *F*. Then there is a Feller process *X* associated with the Dirichlet form $(\mathcal{E}, \mathcal{F})$ with J(x, y) and *X* has a continuous transition density function p(t, x, y) with respect to the measure μ satisfying the following two-sided estimate

$$p(t,x,y) \asymp \frac{1}{(\phi^{-1}(t))^d} \wedge \frac{t}{|x-y|^d \phi(|x-y|)}$$

for all t > 0 and all $x, y \in F$, where ϕ^{-1} is the inverse function of ϕ .

Remarks:

- Such a result is new even when F is \mathbf{R}^n .
- Stability. Parabolic Harnack inequality.

THE END