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Symmetric α-Stable Process

is a Lévy process Z on R
n with

E eiξ·(Zt−Z0) = e−t|ξ|α ,

where α ∈ (0, 2). Unlike Brownian motion, t 7→ Zt(ω) is
discontinuous and Zt has heavy tails:

P(|Zt| > λ) ≈ λ−α.

• E|Zt|p < ∞ if and only if p < α.

• Self-similarity:
{
λ−1/α(Zλt − Z0), t ≥ 0

}
has the same

distribution as {Zt − Z0, t ≥ 0}.
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Generator

• Generator: ∆α/2 := −(−∆)α/2.

(∆)α/2f(x)

=

∫

Rn

e−iξ·x |ξ|α f̂(ξ) dξ

= lim
δ↓0

∫

|y−x|>δ
(f(y) − f(x))

c(n, α)

|x − y|n+α
dy

= c(n, α)

∫

Rn

(
f(y) − f(x) −∇f(x) · (y − x)1{|y−x|≤1}

)

c(n, α)

|x − y|n+α
dy.
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Construction of Stable Processes

Let B be BM(Rn) and Y be an independent (α/2)-subordinator
on R

+:
E e−λYt = e−tλα/2

.

Then Zt := BYt
is a symmetric α-stable process on R

n.

In contrast to the Brownian motion, the coordinate processes of
symmetric α-stable process in R

n are 1-dimensional symmetric
α-stable processes but are not independent each other.
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Transience and Recurrence

When n = 1, symmetric α-stable process Z is pointwise
recurrent when α > 1, neighborhood recurrent when α = 1, and
is transient when α < 1.

When n ≥ 2, Z is always transient.

• Transition density function p(t, x, y) estimate:

p(t, x, y) ≍ min

{
t−n/α,

t

|x − y|n+α

}

Here f ≍ g means f/g is bounded between two positive
constants.
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Dirichlet from

The Dirichlet form (E ,F) of Z is given by F = Dom(
√
−L) and

E(u, v) = (
√
−Lu,

√
−Lv)L2(Rn,dx)

=
c(n, α)

2

∫

Rn×Rn

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy.

In fact,

F = {u ∈ L2(Rn, dx) : E(u, u) < ∞} = Wα/2,2(Rn).
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Stable process in an open subset

Let D be an open subset of R
n and define

τD = inf{t > 0 : Zt /∈ D}.

Typically, ZτD
∈ R

n \ D.

Green function:
∫
D GD(x, y)f(y)dy = Ex

∫ τD

0 f(Zs)ds.

Green Function Estimates: C-Song, Kulczcki

GD(x, y) ≍ min

{
1

|x − y|n−α
,

δD(x)α/2δD(y)α/2

|x − y|n

}
,

where δD(x) = dist(x, Dc).
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Censored stable process

A censored α-stable process Y in a domain D can be obtained
from a symmetric α-stable process Z by killing it at the time
when it jumps outside D, and then starting an independent copy
of Z from the point where the jump originated. The procedure is
repeated for the new process, and then by induction infinitely
(countably) many times.

Equivalent characterization: Y has Dirichlet form

E(u, v) = c

∫

D×D

(u(x) − u(y))(v(x) − v(y))

|x − y|n+α
dxdy,

F = C∞
c (D)

√
E1

= W
α/2,2
0 (D).
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Boundary behavior

• Does the censored process approach the boundary of D in a
finite time?

Example: D = (0, 1) \ K, where K is the Cantor set in (0, 1).

Definition. A set D ⊂ R
n is called an n-set if there is c > 0 such

that
|B(x, r)| ≥ crn for every x ∈ D and r < 1.

Let Capα denote the capacity induced by the symmetric α-stable
process in R

n, or equivalently, by Riesz potential kernel
|x − y|α−n.
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Boundary behavior (continued)

Theorem. (Bogdan-Burdzy-C.)
Let D be a bounded open n-set in R

n. Then the censored
α-stable process in D is recurrent if and only if Capα(∂D) = 0.
When Capα(∂D) > 0,

Px(ζ < ∞ and Yζ− ∈ ∂D) = 1 for every x ∈ D.

Corollary. If the boundary of a bounded n-set D has (locally)
finite and positive d-dimensional Hausdorff measure. Then Y is
recurrent if and only if α ≤ n − d. When α > n − d,

Px(ζ < ∞ and Yζ− ∈ ∂D) = 1 for every x ∈ D.
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Reflected Stable process

Consider the reflected Dirichlet space (E ,F ref) of Y , where

F ref = {u ∈ L2(D, dx) : E(u, u) < ∞}= Wα/2,2(D).

When D is an n-open set, (E ,F ref) is a regular Dirichlet space
on D and so there is an associated Hunt process Y ∗ starting
from quasi-every point in D.

Fact: Y is a subprocess of Y ∗ killed upon hitting ∂D.

So the above boundary behavior question is equivalent to
whether Y = Y ∗ or not.

Implication: Y = Y ∗ if and only if W
α/2,2
0 (D) = Wα/2,2(D),

yielding new results on Besov spaces.
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Boundary Harnack principle

Theorem. (Bogdan-Burdzy-C.)
BHP holds for censored α-stable processes in C1,1-smooth open
sets with α > 1. The BHP asserts that harmonic functions that
vanish on the same part of the boundary decay at the same
rate, which is δD(x)α−1.

Green function estimate. (C-Kim)
Let GD denote the Green function of censored α-stable process
in a bounded C1,1-smooth open set D with α > 1. Then

GD(x, y) ≍ min

{
1

|x − y|n−α
,

δD(x)α−1δD(y)α−1

|x − y|n+α−2

}
.

On Symmetric Stable Processes – p. 12/20



d-set

A subset F ⊂ R
n is called a d-set, where 0 < d ≤ n, if there is a

positive Borel measure µ on F and c1 ≥ 1

c−1
1 rd ≤ µ(B(x, r)) ≤ c1 rd for all x ∈ F and 0 < r ≤ 1.

Such a measure µ is called a d-measure on F .

The notion of d-set arises in the theory of function spaces and in
fractal geometry. Geometrically self-similar sets are typical
examples of d-sets. For example, any Lipschitz domain in R

n

with a uniform Lipschitz constant is an n-set, Sierpinski gasket
and Sierpinski carpet in R

2 are d-sets with d = log 3/ log 2 and
d = log 8/ log 3, respectively.
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Dirichlet form on d-set

Let F ⊂ R
n be a closed d-set with the property that

µ(B(x, r)) ≤ c1r
d for every x ∈ F and r > 0.

Let

J(x, y) =
c(x, y)

|x − y|d+α
for x, y ∈ F,

where c(x, y) is a symmetric function on F × F such that

c−1
2 ≤ c(x, y) ≤ c2 for µ-a.e. x, y ∈ F.

Define

E(u, v) =

∫

F×F
(u(x) − u(y))2J(x, y)µ(dx)µ(dy),

F =
{
u ∈ L2(F, µ) : E(u, u) < ∞

}
.
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Neumann heat kernel estimates

Theorem. (C.-Kumagai)
For 0 < α < 2, (E ,F) is a regular Dirichlet form on F . There is a
Feller process Y ∗ on F associated with it (E ,F) on L2(F, µ) and
Y ∗ has a Hölder continuous transition density function p(t, x, y).
Consequently, Y ∗ can be refined to start from every point in F .
Moreover,

p(t, x, y) ≍ min

{
t−d/α,

t

|x − y|d+α

}

for t ≤ 1 and x, y ∈ F , with the multiplicative constants
depending only on n, d, α, and the constants c1 and c2.
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Uniform Hausdorff dimensional result

Assume that α ≤ d.

Theorem. (Benjamini-C.-Rohde)
(i) For every x ∈ F ,

Px (dimHY ∗(E) = αdimHE for all Borel sets E ⊂ R+) = 1.

(ii) Assume F is the closure of a bounded open n-set in R
n. Let

S(ω) = {t ≥ 0 : Y ∗(ω) ∈ ∂D} be boundary occupation time set.
Then

dimHS(ω) = max

{
1 − n − dimH∂D

α
, 0

}
Px-a.s.

for every x ∈ D.
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(continued)

(iii) Under the condition of (ii) with α ≤ n,

dimHY ∗(S(ω)) = max {α + dimH∂D − n, 0} Px-a.s.

for every x ∈ D.

Similar results hold for normally reflected Brownian motions.
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Jump processes of mixed type

A typical example is the symmetric jump process with jumping
intensity

J(x, y) =

∫ α2

α1

c(α, x, y)

|x − y|d+α
ν(dα),

where ν is a probability measure on [α1, α2] ⊂ (0, 2), and
c(α, x, y) is a jointly measurable function that is symmetric in
(x, y) and is bounded between two positive constants.
Rewrite the above jumping intensity J as

J(x, y) =
c(x, y)

|x − y|dφ(|x − y|) for every (x, y) ∈ F × F

with φ(r) = 1/
∫ α2

α1

r−αν(dα).
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Heat kernel estimate

Theorem. (C.-Kumagai)
Assume that F is a closed global d-set F . Then there is a Feller
process X associated with the Dirichlet form (E ,F) with J(x, y)
and X has a continuous transition density function p(t, x, y) with
respect to the measure µ satisfying the following two-sided
estimate

p(t, x, y) ≍ 1

(φ−1(t))d
∧ t

|x − y|dφ(|x − y))

for all t > 0 and all x, y ∈ F , where φ−1 is the inverse function of
φ.

Remarks:
• Such a result is new even when F is R

n.
• Stability. Parabolic Harnack inequality.
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THE END
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