LOCAL SETS
of the
GAUSSIAN FREE FIELD
PART THREFE

Scott Sheflield

based on work with Schramm; Schramm and Wilson; and Werner
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Vector Field ¢* where h(z,y) = 7/2 —y
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Altimeter compass geometry

A ray in the altimeter compass geometry is a flow line of €27 @+h/X) for
some «.
Now let’s modify our sense of direction. Call the direction e>™*(e+/x)

East if a = 0.
North if a = .25.
West if a@ = .5.
South if o = .75.

If h =0, then the rays of the AC geometry are those of ordinary
Fuclidean geometry. More generally, if h is Lipschitz, then the flow line
of e2™(a+h/X) gtarting at a given point exists and is uniquely defined.
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Conformal maps of AC geometries

Let A be defined on a domain D. Let g be a conformal map from D to
D’. Fix x > 0. Then the AC geometry of (D, h) is the same as that of

(D', h+ (x/2m) arg g').

This implies in particular that if A is harmonic, then the rays are
locally the images (under a conformal map) of the rays in a Euclidean

geometry. To see this, let i be an analytic function whose imaginary

part is h, and let g be a map whose derivative is e”.
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AC geometries as affine connections

For a general h, we may view these paths as autoparallels of an affine
connection whose holonomy group consists entirely of dilations. We can
interpret an AC geometry as a non-metric geometry whose curvature is
purely imaginary, namely an imaginary multiple of the charge density

—Ah.
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AC geometry of the GFF

Question: Is there a natural way to define “flow lines” of ¢’"/X when
X is a constant and h is the continuous Gaussian free field (and —Ah is
a Coulomb gas)?

Answer: Yes, using the coupling between SLE, and the GFF given
earlier. The flow lines are forms of SLE, where 0 < x < 4 and

X = 42_—7“)\. There is a constant “height gap” between one side of the
flow line and the other. We may view this gap as an “angle gap.” In

. [ ,{71' . R [
radians, the gap is ;- i.e., A7) revolutions.
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Discretized north-going line, k = .7




Discretized north-going tree, x = .7




ast /west-going trees, k = .




North-going line, x = 2




North-going tree, x = 2




North-going line, x = 3.5







Recall: Important martingale of SLE

Observe:

4 — K

g gi(2)] = —Vkfi(z) " dBy.

dllog fi(z) +

Thus, for any fixed value of z, the following linear combination of the
angle and the winding number is a martingale:

() = — 2 arg((2)) — xarg f{(2) + A

where A := (k) := /4= and x = x(k) := (4 — k).

We chose A\ and y in such a way that makes dh:(z) (which is a multiple
of Im(f;(2)~1)dB;) independent of x.
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Contour lines: local and deterministic

THEOREM: In the couplings (h,7) of the free field h and an SLE,,
as described above, the random set v([0, oc]) is a local set. In fact, for
any stopping time T', the set v(|0,7T]) is local. Moreover, these local
sets are deterministic functions of h.
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AC geometry of the GFF

The flow lines are forms of SLE, where 0 < x < 4 and y = 42_—;)\.

There is a constant “height gap” between one side of the flow line and

the other. We may view this gap as an “angle gap.” In radians, the gap
ER ) revolutions.

. . ’i
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Facts about AC lines of GFF

The following are derived from known facts about SLE, , processes.

. Rays of differing « values may cross if and only if corresponding
Fuclidean lines would cross, in which case they may only cross once.

. T'wo vertical paths angled away from each other may bounce off each
other (but not cross) if and only if the angle difference between them is
less than the height gap.

. A ray may complete a full revolution and hit itself if and only if
2)\" > x. It may complete k/2 revolutions and hit itself if

k> 4k/(k+1). When k= (1,2,3,4...) the critical x is
(2,8/3,3,16/5,...).

0-17



Duality

For k < 4, the “outer boundary” of the east-going tree (with east-west
paths as boundary conditions) is space-filling SLE16. The main
difficulty in proving this is to show that this tree and its boundary are
well-defined.
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Some special £ values explained

The value k = 2 (height gap equals half turn) is the only one for which
the north-going tree (when the boundary values are those we would
have if there were a single north-going path wrapped around the
domain) has the following Markov property: given the north-going ray
v, from an interior point z to the boundary, the conditional north tree
has the same law as the original tree, conformally mapped to the new
domain D\~,.

The UST has a discrete version of this property. Similarly, consider

k= 8/3 and k' = 6 (height gap equals full turn): when a west and east
going path start from a point and wrap around and hit one another,
there is no height gap between them at the hitting place; this implies a
certain “endpoint invariance” property for SLEg.

Percolation has a discrete version of this property.
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