

Dario Martelli **CERN**

New results in AdS/CFT

or

Sasaki-Einstein metrics, toric quivers, and Z-minimisation

Work in collaboration with: J. Sparks;

J. Gauntlett, D. Waldram; S. Benvenuti; S. Franco,

A. Hanany, D. Vegh, B. Wecht; S.-T. Yau

Plan of the talk

- Why are Sasaki-Einstein metrics relevant?
- \bullet $Y^{p,q}$: metrics, toric singularities, and quivers
- Testing AdS/CFT with a-maximisation
- The geometric dual: Z-minimisation
- AdS/CFT duals from toric geometry
- Conclusions

AdS/CFT correspondence

D-branes in String Theory allows us to construct and study supersymmetric gauge theories.

N parallel D3-branes in $\mathbb{R}^{1,9}$ space-time:

World-volume gauge theory: $\mathcal{N}=4$ SU(N) super-Yang-Mills in 4d.

This theory is conformal: $\beta \equiv 0$

Supergravity description: a large number N of D3-branes back-react on the geometry, curving space-time.

In the "near-horizon" the geometry becomes $AdS_5 \times S^5$

This is a solution of Type IIB supergravity, preserving 32 supersymmetries:

$$ds^2 = ds^2(AdS_5) + ds^2(S^5)$$
 $F_{RR}^5 = N(\text{vol}(AdS_5) + \text{vol}(S^5))$

String theory on $AdS_5 \times S^5$ is dual to $\mathcal{N}=4$ SYM theory.

Branes at Calabi-Yau singularities

We are interested in replacing $\mathcal{N}=4$ SYM with different 4d supersymmetric conformal field theories (SCFT).

 $\mathcal{N}=1$ supersymmetric gauge theories can be obtained from D3-branes, replacing $\mathbb{R}^{1,9}$ with $\mathbb{R}^{1,3}\times$ Calabi–Yau.

To obtain an AdS₅ factor in the metric, we consider cones:

$$ds^2(\mathbb{CY}) = dr^2 + r^2 ds^2(Y_5)$$

then, we place N D3 branes transverse to the CY cone

The geometry, after back-reaction of the branes, is now $AdS_5 \times Y_5$. (This is a smooth geometry).

AdS/CFT: $AdS_5 \times Y_5$ is dual to an $\mathcal{N} = 1$ SCFT

The compact five-manifolds Y_5 are Sasaki–Einstein – here we take this as a definition.

Sasaki–Einstein manifolds admit Killing spinors ϵ :

$$\nabla_m \epsilon = \frac{i}{2} \gamma_m \epsilon$$

 \rightarrow supersymmetry is preserved in Type IIB supergravity.

AdS/CFT with the conifold

The first non-orbifold example of AdS/CFT dual pair was discovered by [Klebanov, Witten]

The Calabi–Yau is the conifold, whose Sasaki–Einstein base is the $T^{1,1}$ metric [Romans]

The dual to $AdS_5 \times T^{1,1}$ is a $\mathcal{N} = 1$ $SU(N) \times SU(N)$ quiver gauge theory, with bi-fundamental fields: A_i , B_i i = 1, 2

U(1) isometry of $T^{1,1} \rightarrow U(1)_R$ R-symmetry

 $SU(2) \times SU(2)$ isometry of $T^{1,1} \rightarrow \text{flavour symmetry}$

Central charge in IR $a=\frac{\pi^3N^2}{4\operatorname{vol}(T^{1,1})}$ [Henningson, Skenderis]

- AdS/CFT allows us to study supersymmetric gauge theories in terms of Sasaki–Einstein geometry.
- It would be nice to have more Sasaki-Einstein metrics.

The $Y^{p,q}$ metrics [Gauntlett,DM,Sparks,Waldram]

In Feb '04 we found an infinite family of 5d Sasaki–Einstein metrics, labeled by 2 integers p and q:

$$ds^{2}(Y^{p,q}) = \frac{1-y}{6}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) + \frac{1}{w(y)v(y)}dy^{2} + \frac{v(y)}{9}[d\psi - \cos\theta d\phi]^{2} + w(y)[d\alpha + A]^{2}$$

The functions $w(y,b),\ v(y,b)$ depend on p and q through the parameter

$$b = \frac{1}{2} - \frac{p^2 - 3q^2}{4p^3} \sqrt{4p^2 - 3q^2}$$

The metrics have $SU(2) \times U(1) \times U(1)$ isometry.

And the topology of $S^2 \times S^3$.

The volume is
$$\operatorname{vol}(Y^{p,q}) = \frac{q^2[2p + (4p^2 - 3q^2)^{1/2}]}{3p^2[3q^2 - 2p^2 + p(4p^2 - 3q^2)^{1/2}]}\pi^3$$

These were the first examples of infinite families of explicit Sasaki–Einstein metrics.

• Many new tests of the AdS/CFT correspondence can be done... provided one finds the dual gauge theories.

Toric Calabi-Yau cones $C(Y^{p,q})$

Q: How can the dual gauge theory be determined?

A: The best way is by studying the geometry of the cone.

By definition of Sasaki-Einstein, the metric cones

$$ds^{2}(C(Y^{p,q})) = dr^{2} + r^{2}ds^{2}(Y^{p,q})$$

are (non compact) Calabi-Yau spaces.

Calabi-Yau's can be characterized in terms of (SU(3)-invariant) forms. These are the Kähler 2-form J and the holomorphic (3,0) form Ω

Calabi-Yau
$$\equiv \{dJ = d\Omega = 0\}$$

Two important properties:

- There is a $T^3 \simeq U(1)^3$ symmetry preserving $J, \ \Omega, \ g_{mn}$ $T^3 \subset U(1)^2 \times SU(2)$ isometry
- \bullet There is a Killing vector K (Reeb) obtained as

$$K = J \cdot (r \frac{\partial}{\partial r})$$
 or equivalently $K_m = \overline{\epsilon} \gamma_m \epsilon$

 \Rightarrow The Calabi-Yau's $C(Y^{p,q})$ are toric, with $K \in T^3$.

Toric geometry and $Y^{p,q}$ [DM,Sparks]

Toric geometry provides the link between the metrics and the gauge theories.

Toy example: symplectic toric 2-sphere S^2 $J = \sin \theta d\theta \wedge d\phi$

Here there is a $T^1 = U(1)$ symmetry, generated by $\partial/\partial\phi$:

 $S^2 = \{U(1) \text{ fibered over the interval } I\}.$

The map $\mu: S^2 \to I$ is called the moment map.

Toric geometry allows to describe complicated spaces in terms of their images under the moment map. These are simple convex polytopes, extending the case of S^2 above.

For toric Calabi–Yau, this information is encoded in diagrams living on \mathbb{Z}^2 , called "toric diagrams".

The toric diagrams for the $Y^{p,q}$ Calabi-Yau singularities have four vertices. The location of the vertices depend on p,q. For example:

The dual "toric quiver" gauge theories

[Benvenuti, Franco, Hanany, DM, Sparks]

One can now address the issue of obtaining the gauge theory duals to the geometry.

Which supersymmetric gauge theories are expected to be the dual of a given toric Calabi–Yau space \mathcal{M} (or equivalently, Sasaki–Einstein)?

- 1) the moduli space of the theory is \mathcal{M}
- 2) the theory should flow to a conformal fixed point (AdS_5) We should look at quiver gauge theories of a particular kind, named toric.
- ullet There are constraints from the geometry. For instance area toric diagram $=2p \ \Rightarrow \ SU(N)^{2p}$ theory

4 kinds of bifundamental fields:

p U doublets, q V doublets, p-q Z singlets, p+q Y singlets

superpotential
$$W = \sum^{2q} UVY + \sum^{p-q} ZUYU$$

a-maximisation as a test of AdS/CFT

Geometry:

central charge of SCFT: $a_{geom}[p,q] = \frac{\pi^3}{4\text{vol}(Y)}N^2$

R-charges of bifundamentals: $R_{\text{geom}}^a[p,q] = \frac{\pi \text{vol}(\Sigma_a)}{3\text{vol}(Y)}$

Field theory:

Any $4d \mathcal{N} = 1$ SCFT has a $U(1)_R$ R-symmetry.

Exact R-charges determine central charges [Anselmi et al.]

$$a = \frac{3}{32}(3\text{Tr}R^3 - \text{Tr}R)$$
 $< T^{\mu}_{\mu} > = c(\text{Weyl})^2 + a(\text{Euler})^2$

<u>Problem</u>: the full symmetry group of a SCFT may contain additional global flavour symmetries. The abelian part – F_I – can mix with $U(1)_R$.

Resolution [Intriligator, Wecht]: consider a "trial" R-symmetry

$$R_{\text{trial}} = R_0 + \sum_I s^I F_I$$

• The exact R-charges are those that maximise the central charge a_{trial} as a function of the s^I . And $a=a_{\text{max}}$. [NB: variational problem]

Applying a-maximisation to the $Y^{p,q}$ quiver gauge theories one finds analytic expressions for a[p,q] and R[p,q].

• These agree with the values $a_{\text{geom}}, R_{\text{geom}}$ obtained from the $Y^{p,q}$ metric. [Bertolini,Bigazzi,Cotrone] for $Y^{2,1} \simeq dP_1$, then [BFHMS] in general.

The dual of a-maximisation: Z-minimisation [DM,Sparks,Yau]

$$\begin{array}{c} \text{central charge a} \\ \text{R charges} \end{array} \right\} \begin{array}{c} \text{AdS/CFT} \\ \longleftrightarrow \end{array} \left\{ \begin{array}{c} \text{total volume vol}(Y) \\ \text{volume susy submanifolds} \end{array} \right.$$

Is it possible to extract these charges from the geometry, if we don't know the metric?

Hints from a-maximisation: 1) extremal problem 2) exact $U(1)_R$ R-symmetry $\Leftrightarrow U(1)$ isometry (Reeb vector)

• Start with an arbitrary toric CY singularity: we are given a set of integral vectors $w_a \in \mathbb{Z}^2$, and a "trial" Reeb vector

$$K = b_i \frac{\partial}{\partial \phi_i} \in U(1)^3 \simeq U(1)_0 \times U(1)_{F_1} \times U(2)_{F_2}$$

$$K \rightarrow b = b_0 + \sum_{i=1}^2 b_i e_i$$
 e_i generators of $U(1)_{F_1} \times U(2)_{F_2}$

Construct polytope

$$\Delta_b[w_1,\ldots,w_d,b] =$$

Einstein-Hilbert action $\longrightarrow Z[w_1,\ldots,w_d;b] \sim \mathsf{vol}(\Delta_b)$

The metric is Sasaki–Einstein
$$\Leftrightarrow \frac{\partial Z}{\partial h} = 0$$

Once the "exact" Reeb vector is determined, the relevant volumes can be computed. E.g.

$$vol(Y) \sim Z[b = b_{min}]$$

 \Rightarrow The central charge a and the R-charges R are computed using only the data defining the toric singularity.

Gauge theories from toric geometry [FHMSVW]

How much information on the gauge theory can we extract from the (toric) geometry, without using the metric?

• All the bifundamental fields, with their multiplicities, R-charges, baryonic charges, and flavour charges can be extracted from the toric data, i.e. the vectors $w_i \in \mathbb{Z}^2$.

In the toric case, we can now perform arbitrarily many checks of AdS/CFT, without the metrics.

E.g. " $L^{a,b,c,d}$ ": most general toric singularity with four external points in the diagram:

Field	$U(1)_R$	number	$U(1)_{B}$	$U(1)_{F_1}$
Y	R_1	b	a	1
U_1	R_2	d	-c	0
Z	R_3	a	b	0
U_2	R_4	c	-d	-1
V_1	$R_3 + R_4$	b-c	c-a	-1
V_2	$R_2 + R_3$	c-a	b-c	0

(See also [Benvenuti, Kruczenski], [Butti, Forcella, Zaffaroni])

The R-charges R_a can be computed using Z-minimisation, or the explicit Sasaki–Einstein metrics [Cvetic,Lu,Page,Pope] (See also [DM,Sparks]).

Details of quiver obtained using brane tilings \rightarrow A. Hanany's talk.

Example of the $L^{1,7,4}$ quiver:

Conclusions and outlook

- Sasaki–Einstein metrics $Y^{p,q} \to \text{new tests of AdS/CFT}$ (before, only S^5 and $T^{1,1}$ were known).
- New infinite families of quiver gauge theories (before, a few examples were known, e.g. del Pezzo's).
- Progress towards a 1-1 correspondence between toric singularities and $\mathcal{N}=1$ quiver gauge theories. E. g. brane tilings.
- Z-minimisation \rightarrow compute volumes of Sasaki–Einstein metrics \Rightarrow charges in the dual SCFT.
- A lot of information on the dual gauge theory can be obtained from the geometry, without the explicit metric. I.e. all bifundamentals with their global quantum numbers.
- ullet More information can be obtained from the toric singularity ullet BPS spectrum of gauge invariant operators. [in progress]
- Better understanding of relation between *a*-maximisation and Z-minimisation achieved recently. [Butti,Zaffaroni], [Barnes,Gorbatov,Intriligator,Wright] (to appear).
- Interesting to explore emerging connections with seemingly unrelated subjects: e.g. Calabi-Yau crystals.