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Plan of the talk

• Why are Sasaki–Einstein metrics relevant?

• Y p,q: metrics, toric singularities, and quivers

• Testing AdS/CFT with a-maximisation

• The geometric dual: Z-minimisation

• AdS/CFT duals from toric geometry

• Conclusions
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AdS/CFT correspondence

D-branes in String Theory allows us to construct and
study supersymmetric gauge theories.

N parallel D3-branes in R1,9 space-time:

N D3−branes

World-volume gauge theory: N = 4
SU(N) super–Yang–Mills in 4d.

This theory is conformal: β ≡ 0

Supergravity description: a large number N of D3-branes
back-react on the geometry, curving space-time.

In the “near-horizon” the geometry becomes AdS5 × S5

This is a solution of Type IIB supergravity, preserving 32
supersymmetries:

ds2 = ds2(AdS5)+ds2(S5) F 5
RR = N(vol(AdS5)+vol(S5))

AdS/CFT [Maldacena]

String theory on AdS5×S5 is dual to N = 4 SYM theory.

3



Branes at Calabi–Yau singularities

We are interested in replacing N = 4 SYM with different
4d supersymmetric conformal field theories (SCFT).

N = 1 supersymmetric gauge theories can be obtained
from D3-branes, replacing R1,9 with R1,3×Calabi–Yau.

To obtain an AdS5 factor in the metric, we consider cones:

ds2(CY) = dr2 + r2ds2(Y5)

then, we place N D3 branes transverse to the CY cone

singularity Sasaki−Einstein
 

N D3−branes

Calabi−Yau

The geometry, after back-reaction of the branes, is now
AdS5 × Y5. (This is a smooth geometry).

AdS/CFT: AdS5 × Y5 is dual to an N = 1 SCFT

The compact five-manifolds Y5 are Sasaki–Einstein – here
we take this as a definition.

Sasaki–Einstein manifolds admit Killing spinors ε:

∇mε =
i

2
γmε

→ supersymmetry is preserved in Type IIB supergravity.
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AdS/CFT with the conifold

The first non-orbifold example of AdS/CFT dual pair was
discovered by [Klebanov,Witten]

The Calabi–Yau is the conifold, whose Sasaki–Einstein
base is the T 1,1 metric [Romans]

The dual to AdS5×T 1,1 is a N = 1 SU(N)×SU(N) quiver
gauge theory, with bi-fundamental fields: Ai, Bi i = 1,2
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SU(N) SU(N)

A_i

B_i

quiver representation of
the gauge theory

U(1) isometry of T 1,1 → U(1)R R−symmetry

SU(2) × SU(2) isometry of T 1,1 → flavour symmetry

Central charge in IR a = π3N 2

4 vol(T 1,1)
[Henningson,Skenderis]

• AdS/CFT allows us to study supersymmetric gauge the-
ories in terms of Sasaki–Einstein geometry.

• It would be nice to have more Sasaki–Einstein metrics.
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The Y p,q metrics [Gauntlett,DM,Sparks,Waldram]

In Feb ’04 we found an infinite family of 5d Sasaki–
Einstein metrics, labeled by 2 integers p and q:

ds2(Y p,q) =
1 − y

6
(dθ2 + sin2 θdφ2) +

1

w(y)v(y)
dy2

+
v(y)

9
[dψ − cos θdφ]2 + w(y) [dα+ A]2

The functions w(y, b), v(y, b) depend on p and q through
the parameter

b = 1
2
− p2−3q2

4p3

√

4p2 − 3q2

The metrics have SU(2) × U(1) × U(1) isometry.

And the topology of S2 × S3.

The volume is vol(Y p,q) = q2[2p+(4p2−3q2)1/2]
3p2[3q2−2p2+p(4p2−3q2)1/2]

π3

These were the first examples of infinite families of explicit
Sasaki–Einstein metrics.

• Many new tests of the AdS/CFT correspondence can
be done... provided one finds the dual gauge theories.
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Toric Calabi–Yau cones C(Y p,q)

Q: How can the dual gauge theory be determined?

A: The best way is by studying the geometry of the cone.

By definition of Sasaki–Einstein, the metric cones

ds2(C(Y p,q)) = dr2 + r2ds2(Y p,q)

are (non compact) Calabi–Yau spaces.

Calabi-Yau’s can be characterized in terms of (SU(3)-
invariant) forms. These are the Kähler 2-form J and the
holomorphic (3,0) form Ω

Calabi–Yau ≡ {dJ = dΩ = 0}

Two important properties:

• There is a T 3 ' U(1)3 symmetry preserving J, Ω, gmn

T 3 ⊂ U(1)2 × SU(2) isometry

• There is a Killing vector K (Reeb) obtained as

K = J · (r
∂

∂r
) or equivalently Km = ε̄γmε

⇒ The Calabi–Yau’s C(Y p,q) are toric, with K ∈ T 3.
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Toric geometry and Y p,q [DM,Sparks]

Toric geometry provides the link between the metrics and
the gauge theories.

Toy example: symplectic toric 2-sphere S2 J = sin θdθ ∧ dφ

Here there is a T 1 = U(1) symmetry, generated by ∂/∂φ:

can be represented as

v_1=1

v_2=−1

S2 = {U(1) fibered over the interval I}.

The map µ : S2 → I is called the moment map.

Toric geometry allows to describe complicated spaces in
terms of their images under the moment map. These are
simple convex polytopes, extending the case of S2 above.

For toric Calabi–Yau, this information is encoded in dia-
grams living on Z2, called “toric diagrams”.

The toric diagrams for the Y p,q Calabi–Yau singularities
have four vertices. The location of the vertices depend
on p, q. For example:

Y 1,0

(conifold)
: Y 2,1

(del Pezzo 1)
: Y 3,1 :
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The dual “toric quiver” gauge theories

[Benvenuti,Franco,Hanany,DM,Sparks]

One can now address the issue of obtaining the gauge
theory duals to the geometry.

Which supersymmetric gauge theories are expected to be
the dual of a given toric Calabi–Yau space M (or equiva-
lently, Sasaki–Einstein)?

1) the moduli space of the theory is M

2) the theory should flow to a conformal fixed point (AdS5)

We should look at quiver gauge theories of a particular
kind, named toric.

• There are constraints from the geometry. For instance

area toric diagram = 2p ⇒ SU(N)2p theory

Y 3,2

Y4 1

4 kinds of bifundamental fields:

p U doublets, q V doublets, p−q Z singlets, p+q Y singlets

superpotential W =

2q
∑

UV Y +

p−q
∑

ZUY U
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a-maximisation as a test of AdS/CFT

Geometry:

central charge of SCFT: ageom[p, q] = π3

4vol(Y )
N2

R-charges of bifundamentals: Ra
geom[p, q] = πvol(Σa)

3vol(Y )

Field theory:

Any 4d N = 1 SCFT has a U(1)R R-symmetry.

Exact R-charges determine central charges [Anselmi et al.]

a = 3
32

(3TrR3 − TrR) < T µµ >= c(Weyl)2 + a(Euler)2

Problem: the full symmetry group of a SCFT may contain
additional global flavour symmetries. The abelian part –
FI – can mix with U(1)R.

Resolution [Intriligator,Wecht]: consider a “trial” R-symmetry

Rtrial = R0 +
∑

I

sIFI

• The exact R-charges are those that maximise the central
charge atrial as a function of the sI. And a = amax. [NB:
variational problem]

Applying a-maximisation to the Y p,q quiver gauge theories
one finds analytic expressions for a[p, q] and R[p, q].

• These agree with the values ageom, Rgeom obtained from
the Y p,q metric. [Bertolini,Bigazzi,Cotrone] for Y 2,1 ' dP1, then

[BFHMS] in general.
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The dual of a-maximisation: Z-minimisation
[DM,Sparks,Yau]

central charge a
R charges

}

AdS/CFT

↔

{

total volume vol(Y )
volume susy submanifolds

Is it possible to extract these charges from the geometry,
if we don’t know the metric?

Hints from a-maximisation: 1) extremal problem 2) exact
U(1)R R-symmetry ⇔ U(1) isometry (Reeb vector)

• Start with an arbitrary toric CY singularity: we are given
a set of integral vectors wa ∈ Z2, and a “trial” Reeb vector

K = bi
∂
∂φi

∈ U(1)3 ' U(1)0 × U(1)F1
× U(2)F2

K → b = b0+
∑2

i=1 biei ei generators of U(1)F1
×U(2)F2

Construct polytope

∆b[w1, . . . , wd, b] =
Reeb vector

(1,w_a)

Einstein–Hilbert action −→ Z[w1, . . . , wd; b] ∼ vol(∆b)

The metric is Sasaki–Einstein ⇔ ∂Z
∂bi

= 0

Once the “exact” Reeb vector is determined, the relevant
volumes can be computed. E.g.

vol(Y ) ∼ Z[b = bmin]

⇒ The central charge a and the R-charges R are com-
puted using only the data defining the toric singularity.
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Gauge theories from toric geometry [FHMSVW]

How much information on the gauge theory can we extract
from the (toric) geometry, without using the metric?

• All the bifundamental fields, with their multiplicities,
R-charges, baryonic charges, and flavour charges can be
extracted from the toric data, i.e. the vectors wi ∈ Z2.

In the toric case, we can now perform arbitrarily many
checks of AdS/CFT, without the metrics.

E.g. “La,b,c,d”: most general toric singularity with four
external points in the diagram:

Field U(1)R number U(1)B U(1)F1

Y R1 b a 1
U1 R2 d −c 0
Z R3 a b 0
U2 R4 c −d −1
V1 R3 + R4 b− c c− a −1
V2 R2 + R3 c− a b− c 0

(See also [Benvenuti,Kruczenski], [Butti,Forcella,Zaffaroni])

The R-charges Ra can be computed using Z-minimisation,
or the explicit Sasaki–Einstein metrics [Cvetic,Lu,Page,Pope]

(See also [DM,Sparks]).

Details of quiver obtained using
brane tilings → A. Hanany’s talk.

Example of the L1,7,4 quiver:
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Conclusions and outlook

• Sasaki–Einstein metrics Y p,q → new tests of AdS/CFT
(before, only S5 and T 1,1 were known).

• New infinite families of quiver gauge theories (before, a
few examples were known, e.g. del Pezzo’s).

• Progress towards a 1-1 correspondence between toric
singularities and N = 1 quiver gauge theories. E. g. brane
tilings.

• Z-minimisation → compute volumes of Sasaki–Einstein
metrics ⇒ charges in the dual SCFT.

• A lot of information on the dual gauge theory can be ob-
tained from the geometry, without the explicit metric. I.e.
all bifundamentals with their global quantum numbers.

• More information can be obtained from the toric singu-
larity → BPS spectrum of gauge invariant operators. [in

progress]

• Better understanding of relation between a-maximisation
and Z-minimisation achieved recently. [Butti,Zaffaroni],
[Barnes,Gorbatov,Intriligator,Wright] (to appear).

• Interesting to explore emerging connections with seem-
ingly unrelated subjects: e.g. Calabi–Yau crystals.

13


