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Cancer Stem Cell DifferentiationTherapy

1. Cancer stem cells have been discovered in breast, prostate, skin, blood,
brain and other tumors.

2. Cancer stem cells are capable of persistent self renewal and differentiating
into other cells of limited proliferation potential in the tumor.

3. Recent evidence suggests that specific subsets of genes are abnormally
expressed in cancer stem cells.

4. Aim of cancer stem cell therapy is to Kill, stop the proliferation of, or
causedifferentiation of cancer stem cells.

5. IBl lab is focusing on high throughput and specific siRNA, small molecules,
and expression vector library screening.
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Genetic Regulatory Networks
Transcriptome in Yeast regulates 6500 genes
Transcriptome in Humans regulates about 25000 genes

Transcriptome plus Protein signaling network is a parallel
processing non linear stochastic dynamical system.

Systems Biology seeks the integrated behavior of this
system within and between cells.

Systems Biology also seeks possible general laws.
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Boolean networks as models of GRN’s
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Boolean networks as models of GRN’s
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All basins of attraction belong to the same network realization
with K=2 and N=15.
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SELF-ORGANIZATION AND ADAFPFTATION IN COMPLEX SYSTEMS
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Figure 5.10 Two-dimensional lattice of sites, each a binary state spin which may point up or diown.
Mumber at each point in lattice is period of spin on the lattice state cycle. Hence, sites with 1 are
frozen active or inactive. Each variable is coupled to its four neighbors and is governed by a Boolean
function on those four inputs. When P is increased, the bias in favor of a 1 or a 0 response by any
single spin leads, above a critical value F., to percolation of a frozen component of spins which spans
the lattice and leaves isolated islands of spins free to vary between O and 1. {From Weisbuch and
Stauffer 1987)
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Ordered, Critical and Chaotic Behaviour

Ordered Critical Chaotic
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Figure 12.11 Logarithm of cell replication time versus logarithm of the estimated number of genes per cell
(assumed proportional to DNA content per cell). Solid line through biological data connects the median rep-
lication times. Data from Boolean networks containing 1024 model genes show disiribution of state cycle
lengths for networks using all Boolean functions of & = 2 inputs except “Tautology™ and *Contradiction.™
Median state cycle lengths in Boolean networks with & = 2 inputs for different network sizes are shown, using
all Boolean functions of two inputs and using all but “Tautology™ and “Contradiction.™ {From Kauffman
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ORDER AND ONTOGENY
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Figure 12.7 Logarithm of the number of cell types in organisms across man la plotted against
the logarithm of the DMNA content per cell. Plot is Iim:.urrﬁth a slope of 0.5, i};udp?:}.atinpg a pﬂﬂaﬁ-iuw
relation in which the number of cell types increases as the square root of the amount of DNA per
cell. Iftotal number of structural and regulatory genes is assumed proportional to DN A content, then
the number of cell types increases as a square-root function of the number of genes, Number of
attractors refers to predictions of numbers of model cell types in model genomic regulatory systems
having K = 2 inputs per gene.
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Figure 12.18 Transdetermination between different imaginal-disc-determined states in D. melg-
nogaster. Arrows show observed transdetermination steps. Arrow lengths reflect relative proba.bilitjes
of transiti ons. Dotted arrow into genital disc indicates that the transdetermination source to genitalia
15 not certain but is thought to be antenna. Circled numbers indicate minimum number of trans-
determination steps separating a disc from the mesothorax determined state. (From Kauffman 1973)
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Figure 12.22 Graph of homeotic transformations in humans in the epithelial lining of the digestive,
urinary, and female reproductive systems. An arrow from tissue A to tissue B means that patches of
B epithelium can be found in the epithelium of A. Thick arrows denote relatively common events,

and thin arrows denote very rare ones. Only the epithelial component of each organ is transformed.
(From Slack 1985)
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Screening for
Differentiation therapy
of cancer
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Differentiation therapy revisited
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InCell1000 for
High Throughput Image Analysis
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Comparison of Total Cell Number Counting
(TL-2 Plate 3, well A1-4, H1 and H8)
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Comparison of Positive Cell Number Counting
(TL-2 Plate 3, well A1-4, H1 and H8)
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Comparison of Positive Cell Percentage
(TL-2 Plate 3, well A1-4, H1 and H8)
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%Lipid Accumulators 7 Days post drugging
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MCF7 cells were seeded in a 96 well plate and treated with various chemicals in a range of concentrations then maintained at cell culture conditions for
7 days. At 7 days post treatment, cells were fixed and stained with a fluorescent green neutral lipid stain and counterstained with Dapi to visualize the
nucleus. Five fields in duplicate for each well were analyzed, and a ratio of lipid accumulating cells to total nuclei per field was calculated. Bars
represent the average percent of lipid accumulating cells in each test condition. Error bars represent one standard deviation of the mean.

Stuart A. Kauffman Nature, Max Planck Dec. 2006



“Hits” (from Crooks library)
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Oil Red O / hematoxylin staining of MCF7 cells:
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Oil Red O / hematoxylin staining of MCF7 cells:
20x objective, 1.5X digital zoom

Negative control:
DMSO 0.1%



“Hits” (from Crooks library)
55N15@f‘3‘ 2.5 uM

Oil Red O / hematoxylin staining of MCF7 cells:
20x objective, 1.5X digital zoom

Negative control:
DMSO 0.1%




Detection of differentiation
by shift in 40-dimensional phenotype space

HL60 » Differentiated neutrophil

| PC2 vs. PC1




* Approaches to discovering structure and logic
of genetic regulatory nets.

1. ChIP-Chip.
2. Inference of transcription factor binding sites.

3. Inference of structure and logic from time
series gene expression data.

4. Promoter bashing.
5. Data base integration.



IADGRN

1) Generate network and Boolean functions

2) Generate a random initial state

3) Generate a path of states (affected by noise)
4) Infer the network with pairwise MI and DPI
5) Apply post-inference engine

6) Results Analysis

Memory requirements:

N (number genes), R (number runs), k (connectivity)
Path of States ~ O(N.R)

K functions ~ (N.2K)

Memory usage before inference engine ~ O(N2+N.R+N.2kK)
Adjacency Matrix ~ O(N?)

Inference engine: O(2.S.N2+N?2)

Limits:
50.000 genes,
20 inputs/gene.



Predicting inferability

Yeast Network, 3459 genes, exponential input
distribution: Medusa network.

Using 600 independent state transitions and mutual
information threshold we predicted that we could infer
33% of the regulatory connections and in fact
predicted 34% with no false positives.

Future: Inferring Stochastic Genetic Networks with
array noise.

Long term aim is to use gene expression time series
from real cells and be able to estimate inferability of
network’s structure and logic.

Inferring personalized structure and logic of cancer
stem cell aberrant circuitry for therapy.
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Heuristic Approach to Sparse Approximation
of Gene
Regulatory Networks

M. ANDRECUT, S. HUANG, and S.A. KAUFFMAN



ABSTRACT

Determining the structure of the gene regulatory network using the information in genome-
wide profiles of mRNA abundance, such as microarray data, poses several challenges,
Typically, “static” rather than dynamical profile measurements, such as those taken from
steady state tissues in various conditions, are the starting point. This makes the inference
of causal relationships between genes difficult. Moreover, the paucity of samples relative
to the gene number leads to problems such as overfitting and underconstrained regression
analysis. Here we present a novel method for the sparse approximation of gene regulatory
networks that addresses these issues. It is formulated as a sparse combinatorial optimization
problem which has a globally optimal solution in terms of {3 norm error. In order to
seek an approximate solution of the [y optimization problem, we consider a heuristic
approach based on iterative greedy algorithms. We apply our method to a set of gene
expression profiles comprising of 24,102 genes measured over 79 human tissues. The inferred
network is a signed directed graph. hence predicts causal relationships. It exhibits typical
characteristics of regulatory networks organism with partially known network topology,
such as the average number of inputs per gene as well as the in-degree and out-degree
distribution.

Key words: automata, combinatorial optimization, statistical mechanics, stochastic processes,
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FIG. 4. The in-degree and the out-degree distribution of the reconstructed network: p = 97.5;95; 90.



SUMMARY

1. Genetic regulatory network 1s a nonlinear
(stochastic) dynamical system.

2. Cell types are probably attractors

Differentiation 1s 1. transition between
attractors; 11. Bifurcations to new attractors

Cancer cells, with or without somatic
mutations can be induced to differentiate to
non-proliferating cells: Cancer Differentation
Therapy may be a major new approach.



