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Lattices

» A lattice is a discrete subgroup of R”
» Equivalently, set of integral linear combinations:
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Lattices reduction

» Lattice reduction looks for a “good” basis
» Easy to view in dimension 2
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Gauss’s reduction algorithm

Require: Initial lattice basis (d, V)

if | & < ||V| then
Exchange d and v

end if

repeat
Minimize |G — AV, i.e., A — L(UW)/HV\H
Letd«— U0 — AV
Swap d and v

until [jul| < |v|

Output (4, V) as reduced basis

Antoine Joux Looking back at lattice-based cryptanalysis



s reduction algorithm
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Gauss
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Gauss’s reduction algorithm
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Gauss’s reduction algorithm

e o o @ o o o o o e @ o s 0 e 0 e @ o o
e @ ¢ o o o o o @ o o 0 o 0 e @ e o e o o
e o o o o e @ e s o s 0 e @ e e e e @
e o o o @ o o o o 0 o @ o o s 0 e 0o @ o o
e o @ ¢ o o o o o @ o o o e e e @ e o o
@ ¢ o o o o o @ o o o o 0 o @ s o s o o o
e o o o o @ o o o o e o @ e e e 0 e @
e o o @ o o o 0 e e @ o s e e 0 e @ o o
e @ ¢ o o o o o @ o o 0 o 0 e @ e o e o o
e o o o o o @ o e o e 0 e @ e e e e @
e o o o @ o o o o 0 o @ o 0 s 0 e 0o @ o o
o e @ o o o o o o e o o o 0 o @ o o o o
@ ¢ o o 0 0 0o @ o e o o o @ o o o o o o
e o o o o @ o o o .o o o o o 0 0 o @ o
e o o @ o o o o o o e o o o o o @ o o o

Looking back at lattice-based cryptanalysis



A useful tool: Gram-Schmidt orthogonalization

» Create (by*,- - , b},) such that:
> BT = 51,
» by is the projection of b;, orthogonally to previous vectors.

» Defined by the equation:
i—1 BB
bf =bi—>_ mjb; where m;;= ( i' 2)
p 167l

v

Basis of the same vector space

Not a lattice basis
Useful to quantify how “orthogonal” a lattice basis is.

v

v
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Lenstra-Lenstra-Lovasz (1982)

» A polynomial time algorithm

» Arbitrary dimension

» Gauss’s algorithm and Gram-Schmidt orthogonalization
» Enforces the following properties on the output basis:

Hb*H
2

L L2
: D12 (b 1‘b*)
Vi bl < (b,+1 Jrl!rbT\é
i

» Implies (note: 1/4 <6 < 1):

Vi<j ‘(b|b*)

(6~ 1/4) 1B;1° < 1B, 41
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Key properties of LLL-reduced basis

» First vector is “quite short”

N
vz (o-4) B

1 n(n-1)/4 n
dott) > (5-5) 1B

» Often used with 6 = 3/4:

Iby]| < 20=1/2 )\
Iby|| < 2(=1/4 det(L)!/"

Antoine Joux Looking back at lattice-based cryptanalysis



Key properties of LLL-reduced basis

» Last vector is “quite orthogonal” to previous ones

. 12
1Bl > (6—) T

4
- n 1 n(n—1)/4
BT = (5-5) detw)
» In particular, with § = 3/4:
o I |
Bl > S
| det(L)!/"
ball = Sa=ya
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Knapsacks

» The subset-sum problem (or knapsack problem) is:

» Given integers a1, ..., a,and S
» Find ey, ..., e, with 0/1 values such that:

n
S= Z €;d;
i=1

» NP-hard problem
» Some cases are easy (e.g. a; =2/~ 1)
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Knapsack-based cryptosystems

» Main idea: Hide an easy knapsack in a hard-looking one
» Example: Merkle-Hellman cryptosystem

» Start from super-increasing knapsack where a; > Z/’-;} a;
Choose g > >_7, a; (prime for simplicity)
Choose r a random integer modulo q
Form new knapsack with b; = ra,; (mod q)
Encryption: Compute S = >_7 | b
Decryption: Let S; = Sr~' (mod q) and solve easy
knapsack

vV vy VVY

» Broken by Shamir at Crypto’82
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Sketch of Shamir’s attack

Assume 7 is identity (or guess (1), 7(2), 7(3), 7(4))
For simplicity, assume that b; and b, are coprime
Let ¢z = b3/b> (mod by) and ¢4 = by/b> (mod by)
Form lattice (spanned by rows) :

1 ¢ ¢4
0 by O
0 0 by

Contains all vectors (Abo, Abs, Abs) modulo by
Remark that a1 b; — a;by = u;q and u; small
Yields short vector (u», us, us)

vV v v Y

\ A 4

v
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Sketch of Shamir’s attack (continued)

» In particular: a;/q = u;/b; (mod by)
> Let n= U,'/b,‘ (mod b1)
» We can now decrypt with (mostly) equivalent key (u, by)
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Another approach to break Merkle-Hellman knapsack

» Since a; is super-increasing, a, has 2n bits
» So does g and all b;s
» Define density of a knapsack:

B n
~ log,(max; a;)

» As a general rule:
Low density = Easy to solve
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Basic low-density attack

» Consider the lattice generated by columns of:

Kay Ka --- Ka, Ks
1 0 -~ 0 0
0 i .- 0 O
0O 0 -~ 1 0

» With K large enough
» LLL outputs short vector with 0 on the first line

» Short relation >°7_, via; = s

Is it the correct {0, 1} solution?
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Basic low-density attack

» Lagarias-Odlyzko (1985)
» Correct solution when d < 0.6463
» Assuming a shortest lattice vector oracle
» Surprisingly:
Works well in practice!

» With LLL bounds, would need d < O(1)/n
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Improved low-density attacks

» Consider the lattice generated by columns of:

Kay Kao --- Ka, Ks
1 0 - 0 1/2
0 1 -~ 0 1/2
o 0 - 1 1/2

» Improved bound d < 0.9408
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Improved low-density attacks

» Alternative lattice:

Ka Ka, --- Ka, —Ks
Nl -1 o -1 1
T
1 -1 . on+1 -1
4 1 . 1 i

» Same bound d < 0.9408
» Useful when number of 0s and 1s is unbalanced

Antoine Joux Looking back at lattice-based cryptanalysis



A note of caution

» Despite these early success:
» Lattice-reduction is hard
» Some cryptosystems even rely on this hardness
» In practice: Lattice-reduction works very well in moderate
dimension
» In higher dimension, many problems appear:
» Exponential gap between b; and first minimum
» Unstability problems

» Running time and performance greatly depend on
considered lattice

Would be nice to have attacks without oracles.
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Knuth’s truncated linear congruential generator

» A classical pseudo-random generator defined from
sequence:
Xiy1 = ax;+b (mod q)
for simplicity, assume that q is prime.
» Write x; in binary as y;||z;
» Qutput y; (a-fraction of k = log, q)

» Many attacks: most general by Stern (1987)
» Improved by Contini and Shparlinski
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Sketch of attack

» First remark that:
Xi1— X =4d (x1— X)) (mod q).
> If:
d
> ai(Xip1 —x) =0
i=0

then, assuming xo — x; # 0 (mod q), the polynomial

has a as a root modulo q.

Antoine Joux Looking back at lattice-based cryptanalysis



Sketch of attack

» Given two such polynomials Py and Ps:
q|Res(P, Ps).

» With three polynomials, take GCD of resultants.
» It remains to construct such polynomials.
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Sketch of attack: Stern’s construction of polynomials

» First build vectors:

Yit1 = Vi
Y = Yigo f}’i+1
Yitt — Vitt—1

we also use notation X; and Z;
» Search for a short zero linear combination:

n
Z a;Y;=0.
i=1

» Relations exist with |a;| < B with B = 2t(ek+logn+1)/(n-1)
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Sketch of attack: Stern’s construction of polynomials

» Classical use of lattice reduction:

KY; KYs - KY,
0o 1 - 0
o 0 - 1

» With LLL and K = [/n2("=1)/2 B], relation satisfies:

n
S otk
i=1
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Sketch of attack: Stern’s construction of polynomials

» Since -7 ; ;Y; = 0, we have:

n n
Z aiXi = Z a;iZ;
i—1 i—1

» Thus, Y7, a;X; is small. It is also belongs to the lattice:

1 00 --- 0
& 0 g --- 0
at—1 o0 --- q

» No small non-zero vector in this lattice
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Sketch of attack: Stern’s construction of polynomials

» Thus: .
Z aiXi=0
i=1

» As a consequence, the polynomial:

n
Z aj Z=1=0
i=1

admits a as a root modulo g.
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Coppersmith’s small root algorithms

» Modular version, solve polynomial equation:
f(x)=0 (mod N).

Easy when factorization of N is known. Hard in general.
» Bivariate version, find integral roots of:

f(x,y)=0.

Diophantine equations. Hard in general.
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Variant (for simplified analysis)

» Search rational solutions
» Equivalently, consider homogeneous polynomials
» Modular version, solve polynomial equation:

f(Xo,X1) =0 (mod N)
» Bivariate version, find integral roots of:

f(X07X17}’07}/1) = 0.

Homogeneous separately in x and y.
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A simple case (Howgrave-Graham’s variation)

» Search small solutions of:
f(x0,X1) =axg + bxoxi +cx2 =0 (mod N).

W.l.0.g, we may assume ¢ = 1.
» Fix two parameters, D and t

» Consider homogeneous polynomials of degree D with root
(X0, x1) modulo N!

» Obtained by linearly combining:

X0D—2i f(XO’ X1 )i Nmax(O,t—i) and

D—2i—1 i pymax(0,t—i
X, x4 f(xo, x1)" NmaX(0:1=1)
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A simple case

» Use monomial ordering with x; > X
» Head monomial in

D-2i—0 , 0 ' 0,t—i
X020 X8 f(xo, x1)" NMaX(0.1=1)
is X210 xP~21=0 and has coefficient Nax(0.1=1)

Interpret polynomials as lattice points

(01 Dol Doxy” "1 [x])
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A simple case

Dimension of the lattice D + 1
Determinant of the lattice is N(t+1)
LLL produces a short vector of norm:

v

v

v

< oD/4 NH(t+1)/(D+1)

v

If [xo| < B and |xy| < B the corresponding polynomial at
(X0, X1) has value less than:

/D1 2D/4 NH(E1)/(D+1) gD
» With D = 2t and letting t — oo, assuming B < N1/4—«:

VD 1 1 2D/4 Ntt+1)/(D+1) gD Nt
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End of the simple case

» As a consequence, get polynomial F with F(xp, x1) =0
over Z

» Dehomogenizing, we find Fa(xp/x1) =0
» Solve over R
» Recover xg and x; from root r using continued fractions

f of degree d = Works up to N'/29 bound on x, and x;
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A simple case: bivariate version

» Search rational solutions of f(x,y) =0
» Equivalently, consider homogeneous polynomials
» Simple case, take for homogeneous f:

aop XoYo + @1 XiYo + a2 Xoy1 +asxiy1 =0

» Assume that a3 > 0 and is largest coefficient

» Consider lattice containing homogeneous multiples of f of
degree D in x and y separately
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A simple case: bivariate version

» Lattice spanned by polynomials:

i D—1—i D—1—j
XoX4 YOy f

» If (Xo, X1, Yo, Y1) is a solution, the vector:
S=(XPXOYPY? ... XIXPYJYP)

is orthogonal to this lattice. Its norm is at most (D + 1) - B?P
» Construct orthogonal lattice
» Dimension (D+1)2 — D? = 2D + 1
> Determinant: a2”
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A simple case: bivariate version

» LLL yields short vector of norm:

< 2D/2 352/(2D+1)

» When B < a;/“’e, expect to find S

How to make the attack provable ?
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Bivariate version: Coppersmith’s method

» LLL yields last vector 529+1 with
o _ D2 /(2D+1
1B3p41l > 27P/2 a4 /(E0+1)

» When B < a;/4_€, S does not contain 52D+1

» And S orthogonal to B§D+1

= New polynomial with root (xo/X1, Yo/¥1)
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Small root algorithms for integral solutions

» Similar idea, but scaling factors in lattices

» For univariate degree d, modulo N, bound B < N'/¢@
» For bivariate polynomials, first define M(f)
» Degree d in x and y separately:

BxBy < M(f)?/G9
» Total degree d in x and y:

BxB, < M(f)'/?
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Some cryptographic applications

Factoring with high bits known
Breaking RSA with small decryption exponent d < N°-292
Approximate GCD (large common factor of A and B + x)

Used by Shoup to prove the security of RSA-OAEP with
exponent 3

Final step of some side channel attacks

vV v v Y

v

See May’s survey
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Conclusion

Questions ?
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Lenstra-Lenstra-Lovasz (1982)

2
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Comparing the bounds

» Degree d in x and y separately
» If M(f) comes from highest degree monomial,
M(f) = C (ByBy)?
» Integral root, bound is: BB, < C?/9

» Rational root, bound is: BB, < C'/¢
» l.e., as many bits.

» If M(f) comes from lowest degree monomial, M(f) = C

» Integral root, bound is: BB, < C2/(34d)
» Rational root, bound is: BB, < C'/¢
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