THE FIELDS INSTITUTE

ABSTRACTS 1.2

FOR RESEARCH IN MATHEMATICAL SCIENCES

GEOFFREY BURTON University of Bath

Rearrangements and vortex rings

We study axisymmetric vortex rings without swirl, which are steady relative to a steadily translating frame, in an otherwise irrotational ideal fluid which occupies the whole of \mathbb{R}^3 and is stationary at infinity. We use the variational principle proposed by T.B. Benjamin. Here, kinetic energy is maximised over flows for which $\zeta := \omega/r$ (ω being the strength of the azimuthally-directed vorticity and r being the radius of cylindrical coordinates) is a rearrangement of a prescribed non-negative function ζ_0 having compact support, and for which the impulse in the axial direction has a prescribed value I. When $\zeta_0 \in L^p(\mathbb{R}^3)$ for some p > 5/2, we prove existence of the maximiser (which must represent a steady flow) in an extended constraint set which allows some loss of vorticity. We pay particular attention to the case when ζ_0 represents Hill's spherical vortex, whose impulse we denote I_0 . When $I > I_0$ the maximisers are non-spherical and no loss of vorticity arises. If $I \leq I_0$ then the maximiser is spherical, and loss of vorticity occurs if the inequality is strict.