Semi-Monotone Sets and Triangulation of Tame Monotone Families

Andrei Gabrielov

Department of Mathematics, Purdue University

www.math.purdue.edu/~agabriel

Joint work with **N. Vorobjov** (Bath, UK) and **S. Basu** (Purdue) Motivation: Approximation of tame sets by compact sets.

Tame = definable in an o-minimal structure over \mathbf{R} .

All sets and families below are tame.

A family of compact sets $\{S_{\delta}, \delta > 0\}$ is **monotone** if $S_{\delta} \subset S_{\eta}$ for $\delta > \eta$. We say that S_{δ} approximates $S = \bigcup_{\delta > 0} S_{\delta}$.

A monotone family S_{δ} can be defined as $\{f \ge \delta\}$ where f is an upper semi-continuous function. Then $S = \{f > 0\}$.

Theorem. (A.G., Vorobjov, 2009). Let S_{δ} be a monotone family approximating S. For each δ , let $S_{\delta,\epsilon} \searrow S_{\delta}$ as $\epsilon \searrow 0$, so that $S_{\delta,\epsilon}$ is a compact neighborhood of S_{η} for $\eta > \delta$. Then, for $0 \le \epsilon_0 \ll \delta_0 \ll \ldots \ll \epsilon_k \ll \delta_k \ll 1$,

$$T_k = S_{\delta_0, \epsilon_0} \cup \ldots \cup S_{\delta_k, \epsilon_k}$$

satisfies $\pi_i(T_k) \twoheadrightarrow \pi_i(S)$ for $i \leq k$.

Conjecture. $\pi_i(T_k) \cong \pi_i(S)$ for i < k. If $k \ge \dim S$, then T_k is homotopy equivalent to S.

Proved when $S_{\delta} = \{f \ge \delta\}$ is **separable**: There is a triangulation of K such that, for any open simplex Λ , the closures of the sets $\{f = \delta\} \cap \Lambda$ and $\{f = \eta\} \cap \Lambda$ are disjoint for $0 < \eta \ll \delta$.

Triangulation of Monotone Families

Conjecture. Given a monotone family S_{δ} in a compact $K \subset \mathbb{R}^n$, there is an (ordered) triangulation of K such that, for each open k-simplex Λ , $\Lambda \cap S_{\delta}$ is **equivalent** to one of explicitly defined **standard families** in the standard k-simplex Δ .

Proved for $n \leq 3$.

Equivalent means that

(a) There exist a standard family $\{V_{\delta}\}$ in Δ and a face-preserving *PL*-homeomorphism $h : \overline{\Lambda} \to \overline{\Delta}$ such that, for every $\delta > 0$, there is $\eta > 0$ such that $V_{\delta} \subset h(S_{\eta})$ and $h(S_{\delta}) \subset V_{\eta}$; (b) For small $\delta > 0$, there exist face-preserving *PL*-homeomorphisms $h_{\delta} : \overline{\Lambda} \to \overline{\Delta}$ such that $h_{\delta}(S_{\delta}) = V_{\delta}$. **Theorem.** Each standard family is equivalent to a family that can be partitioned into separable families.

Example. A non-separable 2D family, and an equivalent family that can be partitioned into two separable families.

Monotone Boolean Functions

A Boolean function $\psi : \{0,1\}^n \rightarrow \{0,1\}$ is **monotone** (decreasing) if replacing 0 by 1 at any position of its argument either preserves its value or changes it from 1 to 0.

Function ψ is **lex-monotone** if it is monotone with respect to the lexicographic order of its arguments, assuming $x_1 \prec \ldots \prec x_n$.

Each standard family $\{V_{\delta}\}$ in the standard *n*-simplex Δ is assigned a lex-monotone Boolean function $\psi(x_1, \ldots, x_n)$ so that $\psi|_{x_j=0}$ is assigned to $\overline{V_{\delta}}|_{\Delta_j}$ for $j \neq 0$, $\psi|_{x_1=1}$ is assigned to $\overline{V_{\delta}}|_{\Delta_0}$. Here Δ_j is the facet of Δ opposite its vertex j.

Standard 1D and 2D families

Partition (iterated barycentric subdivision) of a non-standard family into standard families

Standard 3D families (proper, separable)

Standard 3D families (non-separable)

Regular Cells

Definition. A bounded set $X \subset \mathbb{R}^m$ is a **regular** *n*-cell if (X, \overline{X}) is homeomorphic to (B, \overline{B}) where $B = (0, 1)^n$.

X is *PL*-regular if (X, \overline{X}) is *PL*-homeomorphic to (B, \overline{B}) .

Conjecture. Given a tame monotone family S_{δ} in a compact K, there exists a *PL*-regular cell decomposition of K such that, for each open *n*-cell C,

 $C \cap S_{\delta}$ is a family of *PL*-regular *n*-cells,

 $C \cap \partial S_{\delta}$ is a family of *PL*-regular (n-1)-cells in ∂C .

Need a decent supply of regular cells to prove this Conjecture.

Remark. A cylindrical *n*-cell is called regular in "Tame topology and o-minimal structures" by L. van den Dries if its upper and lower bounds are monotone in each of the variables, and its projection to \mathbb{R}^{n-1} is a regular (in the same sense) (n-1)-cell. Such a cell is **not** necessarily topologically regular.

Example Let $X = \{x > 0, y > 0, x + y < 1, 0 < z < x^2 + y^2\}$, and $Y = \{(x, y, z, t) : 0 < t < 1, (x/t, y/t, z) \in X\}.$

Then Y is regular in the sense of van den Dries. However, for 1/2 < c < 1, $\partial Y \cap \{z = c\}$ is a cone over two disjoint segments, so ∂Y is not a manifold, hence Y is not topologically regular.

Semi-Monotone Sets

A coordinate cone is an intersection of the sets $\{x_j ? 0\}$ where $? \in \{<, =, >\}$.

An open bounded set $X \subset \mathbb{R}^n$ is **semi-monotone** if its intersection with any translation of any coordinate cone is either empty or connected.

Theorem. (Basu, A.G., Vorobjov, 2010) A tame semi-monotone set $X \subset \mathbb{R}^n$ is a *PL*-regular *n*-cell.

Remark. Theorem can be proved for semi-algebraic sets over any real closed field.

Examples of semi-monotone (above) and not semi-monotone (below) sets in ${\bf R}^2$

Proof of Theorem: Induction on the dimension n. Use local conical structure of tame sets. A cone over a regular (n-1)-cell is a regular n-cell.

To glue things together, we need to cut a semi-monotone regular cell by generic coordinate hyperplanes and prove that the pieces are again regular cells.

Generalized Schönflies Theorem. If S^{m-1} is a locally flat PL-sphere embedded in S^m , then it cuts S^m into two PL-cubes.

True for $m \neq 4$, unknown for m = 4. We need it for m = n, n-1.

For $n \leq 5$, we circumvent Generalized Schönflies Theorem with

Proposition. Any acyclic simplicial complex with \leq 5 vertices has a vertex with the acyclic link.

Acyclic 2D complex with 6 vertices, each having non-acyclic link

Acyclic 2D complex with 6 vertices, each having non-acyclic link

Acyclic 2D complex with 6 vertices, each having non-acyclic link

Regular Boolean Functions

A Boolean function $\psi : \{0,1\}^n \to \{0,1\}$ is **regular** if, for any sequence of quantifiers \exists_j and \forall_k applied to ψ , the result **does not depend** on the order of quantifiers.

Here $\exists_j(\psi) = \psi|_{x_j=0} \lor \psi|_{x_j=1}, \quad \forall_k(\psi) = \psi|_{x_k=0} \land \psi|_{x_k=1}.$

Theorem. Let us subtract from the cube $(-1,1)^n$ the union of closed octants corresponding to $\{\psi = 1\}$ for a Boolean function ψ .

The result is a regular cell iff ψ is regular.

Theorem. (Basu, A.G., Vorobjov, 2010) A tame open bounded set is semi-monotone iff, for each $x \notin X$, the set of octants with the vertex at x that do not intersect X corresponds to a non-zero regular Boolean function.

A bounded upper semi-continuous function f defined on a semimonotone set $U \subset \mathbb{R}^n$ is **submonotone** if, for any t, the set $\{f < t\}$ is either empty or semi-monotone. A function f is **supermonotone** if -f is submonotone.

Theorem. (Basu, A.G., Vorobjov, 2010). An open and bounded set $X \subset \mathbb{R}^{n+1}$ is semi-monotone iff $X = \{f(x) < t < g(x)\}$ for some functions f and g on a semi-monotone set $U \subset \mathbb{R}^n$, where f(x) < g(x) for all $x \in U$, f is submonotone and g is supermonotone. A bounded continuous function f defined on a semi-monotone set X is **monotone** if it is sub- and supermonotone, and either strictly monotone or constant in each variable.

A map $f: X \to \mathbb{R}^k$ is **monotone** if each f_j is a monotone function on X and, for any n functions selected from x_i and f_j , each of them is monotone (either strictly increasing, or strictly decreasing, or constant) on the level curves of the other n-1 functions.

In both definitions, independence of the type of monotonicity on the choice of constants should be assumed.

This is true if all f_j are monotone and smooth, and all differentials dx_i , df_j are in general position at each point of X. **Theorem.** Let $f: X \to \mathbb{R}^k$ be a monotone map, $X \subset \mathbb{R}^n$. Let $Y = \{x \in X, y = f(x)\} \subset \mathbb{R}^{n+k}$ be the graph of f. Then, for every *n*-dimensional coordinate subspace L of \mathbb{R}^{n+k} such that projection Z of Y to L is open, Z is a semi-monotone set, and Y is a graph of a monotone map $Z \to \mathbb{R}^k$.