Freeness and the Transpose

Matrices just wanna be free

Jamie Mingo (Queen's University)
with Mihai Popa

COSy, June 26, 2014

GUE random matrices

- $\Omega=M_{N}(\mathbf{C})_{\text {s.a. }} \simeq \mathbb{R}^{N^{2}}, d X$ is Lebesgue measure on $\mathbb{R}^{N^{2}}$, $d P=C \exp \left(-N \operatorname{Tr}\left(X^{2}\right) / 2\right) d X$ is a probability measure on Ω (C is a normalizing constant, $\operatorname{Tr}\left(I_{N}\right)=N$)
- $X: \Omega \rightarrow M_{N}(\mathbf{C}), X(\omega)=\omega$, the Gaussian Unitary Ensemble, is a matrix valued random variable on the probability space (Ω, P)
- if $X=\frac{1}{\sqrt{N}}\left(x_{i j}\right)$, then $\mathrm{E}\left(x_{i j}\right)=0, \mathrm{E}\left(\left|x_{i j}\right|^{2}\right)=1$ and $\left\{x_{i j}\right\}_{i \leqslant j}$ are independent complex Gaussian random variables (real on diagonal)

Wigner's semi-circle law (1955)

5×5 gue sampled 10,000 times.

100×100 gue sampled once.

4000×4000 GUE sampled once. unilateral shift.

Wishart matrices and the Marchenko-Pastur law

- G is a $M \times N$ random matrix $G=\left(g_{i j}\right)_{i j}$ with $\left\{g_{i j}\right\}_{i j}$ independent complex Gaussian random variables with mean 0 and (complex) variance 1, i.e. $\mathrm{E}\left(\left|g_{i j}\right|^{2}\right)=1$. $W=\frac{1}{N} G^{*} G$ is a Wishart random matrix

$$
\begin{aligned}
& c=\lim _{N \rightarrow \infty} \frac{M}{N}>0 \\
& a=(1-\sqrt{c})^{2}, b=(1+\sqrt{c})^{2} \\
& d \mu_{c}=(1-c) \delta_{0}+\frac{\sqrt{(b-t)(t-a)}}{2 \pi t} d t
\end{aligned}
$$

$M=50 N=100$ Wishart matrix sampled 3,000 times, the curve shows the eigenvalue distribution as $M, N \rightarrow \infty$ with $M / N \rightarrow 1 / 2$

Eigenvalue distributions and the transpose

- Let X_{N} be the $N \times N$ GUE. (dotted curves show limit distributions)

- The GOE is the same idea as the GUE except we use real symmetric matrices
- if we let Y_{N} be the $N \times N$ GOE then $Y_{N}+\left(Y_{N}^{2}\right)^{t}=Y_{N}+Y_{N}^{2}$; so we would not get different pictures

Haar unitaries

- let U_{N} be the $N \times N$ Haar distributed unitary matrix
$U_{10}+U_{10}^{*}$ sampled 100 times

Kesten's law on \mathbb{F}_{2}

tensor and free independence
 Tensor version

- \mathcal{A}, \mathcal{B} unital C^{*}-algebras, $\varphi_{1} \in S(\mathcal{A}), \varphi_{2} \in S(\mathcal{B})$, states
- $\mathcal{A}_{1}=\mathcal{A} \otimes 1 \subset \mathcal{A} \otimes \mathcal{B}, \mathcal{A}_{2}=1 \otimes \mathcal{B} \subset \mathcal{A} \otimes \mathcal{B}$ are tensor independent with respect to $\varphi=\varphi_{1} \otimes \varphi_{2}$
- if $x \in \mathcal{A}_{1}, y \in \mathcal{A}_{2}$, then x and y are tensor independent so $\varphi\left(x^{m_{1}} y^{n_{1}} \cdots x^{m_{k}} y^{n_{k}}\right)=\varphi\left(x^{m_{1}+\cdots+m_{k}}\right) \varphi\left(y^{n_{1}+\cdots+n_{k}}\right)$

Free version

- $\mathcal{A}_{1}=\mathcal{A} * \mathrm{c} 1 \subset \mathcal{A} * \mathrm{C} \mathcal{B}, \mathcal{A}_{2}=1 * \mathrm{C} \mathcal{B} \subset \mathcal{A} * \mathrm{c} \mathcal{B}$ are freely independent with respect to $\varphi=\varphi_{1} * \mathrm{C} \varphi_{2}$
- if $x \in \mathcal{A}_{1}$ an $y \in \mathcal{A}_{2}$ then
$\varphi\left(x^{m_{1}} y^{n_{1}} x^{m_{2}} y^{n_{2}}\right)=\varphi\left(x^{m_{1}+m_{2}}\right) \varphi\left(y^{n_{1}}\right) \varphi\left(y^{n_{2}}\right)+$
$\varphi\left(x^{m_{1}}\right) \varphi\left(x^{m_{2}}\right) \varphi\left(y^{n_{1}+n_{2}}\right)-\varphi\left(x^{m_{1}}\right) \varphi\left(x^{m_{2}}\right) \varphi\left(y^{n_{1}}\right) \varphi\left(y^{n_{2}}\right)$
- if $a_{1}, \ldots, a_{n} \in \mathcal{A}_{1} \cup \mathcal{A}_{2}$ are alternating i.e. $a_{i} \in \mathcal{A}_{j_{i}}$ with $j_{1} \neq j_{2} \neq \cdots \neq j_{n}$ and centered i.e. $\varphi\left(a_{i}\right)=0$; then the product $a_{1} \cdots a_{n}$ is centered, i.e. $\varphi\left(a_{1} \cdots a_{n}\right)=0$.

the method of moments (and cumulants)

- how do you prove the central limit theorem? i.e. that a certain limit distribution is Gaussian
- $\mathrm{E}\left(e^{i t X_{n}}\right) \xrightarrow{n \rightarrow \infty} \mathrm{E}\left(e^{i t X}\right)$ where X is Gaussian
- take a logarithm, expand as a power series and check convergence term by term; use $\log \mathrm{E}\left(e^{i t X}\right)=\frac{(i t)^{2}}{2!}$
- the R-transform is the free version of $\log \mathrm{E}\left(e^{i t X}\right)$, $G(R(z)+1 / z)=z$ where $G(z)=\mathrm{E}\left((z-X)^{-1}\right)$.
- for the semicircle law $R(z)=z$ i.e. all free cumulants vanish except variance is 1
- for Marchenko-Pastur $R(z)=c /(1-z)$, i.e. all free cumulants equal to c
- X and Y are free if and only if mixed free cumulants vanish (also true for tensor independence-this is why cumulants were first used 100 yrs ago)

unitarily invariant ensembles

- a $N \times N$ random matrix, $X=\left(x_{i j}\right)_{i j}$, is unitarily invariant if for all U, a $N \times N$ unitary matrix, we have

$$
\mathrm{E}\left(x_{i_{1} j_{1}} x_{i_{2} j_{2}} \cdots x_{i_{m} j_{m}}\right)=\mathrm{E}\left(y_{i_{1} j_{1}} y_{i_{2} j_{2}} \cdots y_{i_{m} j_{m}}\right)
$$

where $Y=U X U^{-1}=\left(y_{i j}\right)_{i j}$ for all i_{1}, \ldots, i_{m} and $j_{1}, \ldots j_{m}$

- if for all $k, \lim _{N \rightarrow \infty} \mathrm{E}\left(\operatorname{tr}\left(X_{N}^{k}\right)\right)$ exists, then we say $\left\{X_{N}\right\}_{N}$ has a limit distribution
- тнм (M. \& Popa) if $\left\{X_{N}\right\}_{N}$ has a limit distribution and is unitarily invariant then X and X^{t} are asymptotically free
- GUE, Wishart, and Haar distributed unitary are all unitarily invariant so out theorem applies

(Block) Wishart Random Matrices: $M_{d_{1}}(\mathbf{C}) \otimes M_{d_{2}}(\mathbf{C})$

- Suppose $G_{1}, \ldots, G_{d_{1}}$ are $d_{2} \times p$ random matrices where $G_{i}=\left(g_{j k}^{(i)}\right)_{j k}$ and $g_{j k}^{(i)}$ are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e.
$\mathrm{E}\left(\left|g_{j k}^{(i)}\right|^{2}\right)=1$. Moreover suppose that the random variables $\left\{g_{j k}^{(i)}\right\}_{i, j, k}$ are independent.

$$
W=\frac{1}{p}\left(\frac{\frac{G_{1}}{\vdots}}{\frac{G_{d_{1}}}{}}\right)\left(G_{1}^{*}|\cdots| G_{d_{1}}^{*}\right)=\left(G_{i} G_{j}^{*}\right)_{i j}
$$

is a $d_{1} d_{2} \times d_{1} d_{2}$ Wishart matrix. We write $W=\left(W_{i j}\right)_{i j}$ as $d_{1} \times d_{1}$ block matrix with each entry the $d_{2} \times d_{2}$ matrix $G_{i} G_{j}^{*}$.

Partial Transposes

- G_{i} a $d_{2} \times p$ matrix
- $W_{i j}=\frac{1}{p} G_{i} G_{j}^{*}$, a $d_{2} \times d_{2}$ matrix,
- $W=\left(W_{i j}\right)_{i j}$ is a $d_{1} \times d_{1}$ block matrix with entries $W_{i j}$
- $W^{\mathrm{T}}=\left(W_{j i}^{\mathrm{T}}\right)_{i j}$ is the "full" transpose
- $W^{\top}=\left(W_{j i}\right)_{i j}$ is the "left" partial transpose
- $W^{\Gamma}=\left(W_{i j}^{\mathrm{T}}\right)_{i j}$ is the "right" partial tarnspose
- we assume that $\frac{p}{d_{1} d_{2}} \rightarrow \alpha$ and $0<\alpha<\infty$
- eigenvalue distributions of W and W^{T} converge to Marchenko-Pastur with parameter α
- eigenvalues of W^{\top} and W^{Γ} converge to a shifted semi-circular with mean 1 and variance $1 / \alpha$ (Aubrun)
- W and W^{T} are asymptotically free (M. and Popa)
- what about W^{Γ} and W^{\top} ?

Semi-circle and Marchenko-Pastur Distributions

Suppose $\frac{d_{1}}{\sqrt{p}} \rightarrow \frac{1}{\alpha_{1}}$ and $\frac{d_{2}}{\sqrt{p}} \rightarrow \frac{1}{\alpha_{2}}$ and $\alpha=\alpha_{1} \alpha_{2}(c=1 / \alpha$.)

- limit eigenvalue distribution of W (Marchenko-Pastur)

$$
\lim \mathrm{E}\left(\operatorname{tr}\left(W^{n}\right)\right)=\sum_{\sigma \in N C}(n)\left(\frac{1}{\alpha}\right)^{\#(\sigma)-1}=\sum_{\sigma \in N C(n)}\left(\frac{1}{\alpha}\right)^{\#\left(\gamma \sigma^{-1}\right)-1}
$$

(here $\#(\sigma)$ is the number of blocks of $\sigma, \gamma=(1, \ldots, n)$ and $\gamma \sigma^{-1}$ is the "other" Kreweras complement)

- limit eigenvalue distribution of W^{Γ} (semi-circle)

$$
\lim E\left(\operatorname{tr}\left(\left(W^{\Gamma}\right)^{n}\right)\right)=\sum_{\sigma \in N C_{1,2}(n)}\left(\frac{1}{\alpha}\right)^{\#\left(\gamma \sigma^{-1}\right)-1}
$$

$N C_{1,2}(n)$ is the set of non-crossing partitions with only blocks of size 1 and 2. (c.f. Fukuda and Śniady (2013) and Banica and Nechita (2013))

main theorem

- тнм: The matrices $\left\{W, W^{\top}, W^{\Gamma}, W^{\mathrm{T}}\right\}$ form an asymptotically free family
- let $(\epsilon, \eta) \in\{-1,1\}^{2}=\mathbb{Z}_{2}^{2}$.
- let $W^{(\epsilon, \eta)}= \begin{cases}W & \text { if }(\epsilon, \eta)=(1,1) \\ W^{\top} & \text { if }(\epsilon, \eta)=(-1,1) \\ W^{\Gamma} & \text { if }(\epsilon, \eta)=(1,-1) \\ W^{\mathrm{T}} & \text { if }(\epsilon, \eta)=(-1,-1)\end{cases}$
- let $\left(\epsilon_{1}, \eta_{1}\right), \ldots,\left(\epsilon_{n}, \eta_{n}\right) \in \mathbb{Z}_{2}^{n}$

$$
\begin{gathered}
\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)\right) \\
=\sum_{\sigma \in S_{n}}\left(\frac{d_{1}}{\sqrt{p}}\right)^{f_{\varepsilon}(\sigma)}\left(\frac{d_{2}}{\sqrt{p}}\right)^{f_{\mathfrak{n}}(\sigma)} p^{\#(\sigma)+\frac{1}{2}\left(f_{\varepsilon}(\sigma)+f_{\eta}(\sigma)\right)-n} .
\end{gathered}
$$

where $f_{\epsilon}(\sigma)=\#\left(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1}\right)(" \vee$ " means the sup of partitions and \# means the number of blocks or cycles)

Computing Moments via Permutations, I

- $\left[d_{1}\right]=\left\{1,2, \ldots, d_{1}\right\}$,
- given $i_{1}, \ldots, i_{n} \in\left[d_{1}\right]$ we think of this n-tuple as a function $i:[n] \rightarrow\left[d_{1}\right]$
- $\operatorname{ker}(i) \in \mathcal{P}(n)$ is the partition of $[n]$ such that i is constant on the blocks of $\operatorname{ker}(i)$ and assumes different values on different blocks
- if $\sigma \in S_{n}$ we also think of the cycles of σ as a partition and write $\sigma \leqslant \operatorname{ker}(i)$ to mean that i is constant on the cycles of σ
- given $\sigma \in S_{n}$ we extend σ to a permutation on $[\pm n]=\{-n, \ldots,-1,1, \ldots, n\}$ by setting $\sigma(-k)=-k$ for $k>0$
- $\gamma=(1,2, \ldots, n), \delta(k)=-k$
- $\delta \gamma^{-1} \delta \gamma \delta=(1,-n)(2,-1) \cdots(n,-(n-1))$

Computing Moments via Permutations, II

- $\delta \gamma^{-1} \delta \gamma \delta=(1,-n)(2,-1) \cdots(n,-(n-1))$
- if $A_{k}=\left(a_{i j}^{(k)}\right)_{i j}$ then

$$
\operatorname{Tr}\left(A_{1} \cdots A_{n}\right)=\sum_{i_{1}, \ldots, i_{n}=1}^{N} a_{i_{1} i_{2}}^{(1)} a_{i_{2} i_{3}}^{(2)} \cdots a_{i_{n} i_{1}}^{(n)}=\sum_{\substack{i_{ \pm 1}, \ldots, i_{ \pm n} \\ \delta \gamma^{-1} \delta \gamma \delta \leqslant \operatorname{ker}(i)}} a_{i_{1} i_{-1}}^{(1)} \cdots a_{i_{n} i_{-n}}^{(n)}
$$

$$
\begin{aligned}
& \operatorname{Tr}\left(W^{\left(\epsilon_{1}, \boldsymbol{\eta}_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right) \\
& \quad=\sum_{i_{1}, \ldots, i_{n}} \operatorname{Tr}\left(\left(W^{\left(\epsilon_{1}, \eta_{1}\right)}\right)_{i_{1} i_{2}} \cdots\left(W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)_{i_{n} i_{1}}\right) \\
& \quad=\sum_{i_{ \pm 1}, \ldots, i_{ \pm n}} \operatorname{Tr}\left(\left(W^{\left(\epsilon_{1}, \eta_{1}\right)}\right)_{i_{1} i_{-1}} \cdots\left(W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)_{i_{n} i_{-n}}\right) \\
& \quad=\sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \operatorname{Tr}\left(W_{j_{1} j_{-1}}^{\left(\mathfrak{\eta}_{1}\right)} \cdots W_{j_{n j-n}}^{\left(\boldsymbol{\eta}_{n}\right)}\right)
\end{aligned}
$$

where $\delta \gamma^{-1} \delta \gamma \delta \leqslant \operatorname{ker}(i), \epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \operatorname{ker}(j)$ and $j=\underline{i}$ 을

Computing Moments via Permutations, III

$$
\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \mathfrak{\eta}_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)=\sum_{j_{ \pm 1, \ldots, j_{ \pm n}}} \operatorname{Tr}\left(W_{j_{1} j_{-1}}^{\left(\mathfrak{\eta}_{1}\right)} \cdots W_{j_{n} j_{-n}}^{\left(\mathfrak{\eta}_{n}\right)}\right)
$$

with $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \operatorname{ker}(j)$. Let $s=r \circ \eta$ then for $\delta \gamma^{-1} \delta \gamma \delta \leqslant \operatorname{ker}(r)$

$$
\begin{aligned}
\operatorname{Tr} & \left(W_{j_{1} j_{-1}}^{\left(\eta_{1}\right)} \cdots W_{j_{n} j_{-n}}^{\left(\mathfrak{\eta}_{n}\right)}\right) \\
& =\sum_{r_{ \pm 1, \ldots, r_{ \pm n}}}\left(W_{j_{1} j_{-1}}^{\left(\eta_{1}\right)}\right)_{r_{1} r_{-1}} \cdots\left(W_{j_{n} j_{-n}}^{\left(\eta_{n}\right)}\right)_{r_{n} r_{-n}} \\
& =\sum_{s_{ \pm 1}, \ldots, s_{ \pm n}}\left(W_{j_{1} j_{-1}}\right)_{s_{1} s_{-1}} \cdots\left(W_{j_{n} j_{-n}}\right)_{s_{n} s_{-n}} \\
& =p^{-n} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}}\left(G_{j_{1}} G_{j_{-1}}^{*}\right)_{s_{1} s_{-1}} \cdots\left(G_{j_{n}} G_{j_{-n}}^{*}\right)_{s_{n} s_{-n}} \\
& =p^{-n} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} g_{s_{1} t_{1}}^{\left(j_{1}\right)} g_{s_{-1} t_{1}}^{\left(j_{-1}\right)} \cdots g_{s_{n} t_{n}}^{\left(j_{n}\right) \overline{g_{s_{-n} t_{n}}^{\left(j_{-n}\right)}}}
\end{aligned}
$$

Gaussian entries

$\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{1}, \eta_{1}\right)}\right)\right)$

$$
\begin{aligned}
& =p^{-n} \sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} \mathrm{E}\left(g_{s_{1} t_{1}}^{\left(j_{1}\right)} \overline{g_{s_{-1} t_{1}}^{\left(j_{-1}\right)}} \cdots g_{s_{n} t_{n}}^{\left(j_{n}\right)} \overline{g_{s_{-n} t_{n}}^{\left(j_{-n}\right)}}\right) \\
= & p^{-n} \sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} \mathrm{E}\left(g_{s_{1} t_{1}}^{\left(j_{1}\right)} \cdots g_{s_{n} t_{n}}^{\left(j_{n}\right)} \overline{g_{s_{-1} t_{1}}^{\left(j_{-1}\right)}} \cdots \overline{g_{s_{-n} t_{n}}^{\left(j_{-n}\right)}}\right)
\end{aligned}
$$

[subject to the condition that $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \operatorname{ker}(j)$ and $\eta \delta \gamma^{-1} \delta \gamma \delta \eta \leqslant \operatorname{ker}(s)$]

$$
=p^{-n} \sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} \mathrm{E}\left(g_{\alpha(1)} \cdots g_{\alpha(n)} \overline{g_{\beta(1)}} \cdots \overline{g_{\beta(n)}}\right)
$$

where $g_{\alpha(k)}=g_{s_{k} t_{k}}^{\left(j_{k}\right)}$ and $g_{\beta(k)}=g_{s_{-k} t_{k}}^{\left(j_{-k}\right)}$. Using
$\mathrm{E}\left(g_{\alpha(1)} \cdots g_{\alpha(n)} \overline{g_{\beta(1)}} \cdots \overline{g_{\beta(n)}}\right)=\left|\left\{\sigma \in S_{n} \mid \beta=\alpha \circ \sigma\right\}\right|$

Thus
$\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{1}, \eta_{1}\right)}\right)\right)$

$$
\begin{gathered}
=p^{-n} \sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \sum_{ \pm 1, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} \mid\left\{\sigma \in S_{n} \mid \text { "various conditions" }\right\} \mid \\
=\sum_{\sigma \in S_{n}} p^{-n} \mid\{(j, s, t) \mid \text { "various conditions" }\} \mid \\
=\sum_{\sigma \in S_{n}} d_{1}^{g_{1}(\sigma, \epsilon)} d_{2}^{g_{2}(\sigma, \epsilon)} p^{g_{3}(\sigma)}
\end{gathered}
$$

where "various conditions" means

- $\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \leqslant \operatorname{ker}(j)$
- $\eta \delta \gamma^{-1} \delta \gamma \delta \eta \leqslant \operatorname{ker}(s)$
- $j_{-k}=j_{\sigma(k)}$ which is equivalent to $\sigma \delta \sigma^{-1} \leqslant \operatorname{ker}(j)$
- $s_{-k}=s_{\sigma(k)}$ which is equivalent to $\sigma \delta \sigma^{-1} \leqslant \operatorname{ker}(s)$
- $t_{k}=t_{\sigma(k)}$ which is equivalent to $\sigma \leqslant \operatorname{ker}(t)$

Thus
$\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{1}, \eta_{1}\right)}\right)\right)$

$$
\begin{gathered}
=p^{-n} \sum_{j_{ \pm 1}, \ldots, j_{ \pm n}} \sum_{s_{ \pm 1}, \ldots, s_{ \pm n}} \sum_{t_{1}, \ldots, t_{n}} \mid\left\{\sigma \in S_{n} \mid \text { "various conditions" }\right\} \mid \\
=\sum_{\sigma \in S_{n}} p^{-n} \mid\{(j, s, t) \mid " \text { various conditions""\}|} \\
=\sum_{\sigma \in S_{n}} d_{1}^{g_{1}(\sigma, \epsilon)} d_{2}^{g_{2}(\sigma, \epsilon)} p^{g_{3}(\sigma)} \\
\mathrm{E}\left(\operatorname{Tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)\right) \\
=\sum_{\sigma \in S_{n}}\left(\frac{d_{1}}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)}\left(\frac{d_{2}}{\sqrt{p}}\right)^{f_{\eta}(\sigma)} p^{\#(\sigma)+\frac{1}{2}\left(f_{\varepsilon}(\sigma)+f_{\eta}(\sigma)\right)-n}
\end{gathered}
$$

where $f_{\epsilon}(\sigma)=\#\left(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1}\right)($ " V " means the sup of partitions)

finding the highest order terms

- general fact: if p and q are pairings then $\#(p \vee q)=\frac{1}{2} \#(p q)$. In fact we can write the permutation $p q$ as a product of cycles $c_{1} c_{1}^{\prime} \cdots c_{k} c_{k}^{\prime}$ where $c_{i}^{\prime}=q c_{i}^{-1} q$ and the blocks of $p \vee q$ are $c_{i} \cup c_{i}^{\prime}$
- \#($\left.\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1}\right)=\frac{1}{2} \#\left(\delta \gamma^{-1} \delta \gamma \cdot \epsilon \delta \sigma \delta \sigma^{-1} \epsilon\right)$
- if $\pi, \sigma \in S_{n}$ and $\langle\pi, \sigma\rangle$ (the subgroup generated by π and σ) has only one orbit then there is an integer g (the "genus") such that

$$
\#(\pi)+\#\left(\pi^{-1} \sigma\right)+\#(\sigma)=n+2(1-g)
$$

and $g=0$ only when π is planar or non-crossing with respect to σ.

- $\delta \gamma^{-1} \delta \gamma$ has two cycles so $\left\langle\delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon\right\rangle$ can have either 1 or 2 orbits
- if $\left\langle\delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon\right\rangle$ has one orbit then $\#\left(\epsilon \delta \gamma^{-1} \delta \gamma \delta \epsilon \vee \sigma \delta \sigma^{-1}\right)+\#(\sigma) \leqslant n$

$$
\begin{gathered}
\mathrm{E}\left(\operatorname{tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)\right) \\
=\sum_{\sigma \in S_{n}}\left(\frac{d_{1}}{\sqrt{p}}\right)^{f_{\varepsilon}(\sigma)-1}\left(\frac{d_{2}}{\sqrt{p}}\right)^{f_{\eta}(\sigma)-1} p^{\#(\sigma)+\frac{1}{2}\left(f_{\varepsilon}(\sigma)+f_{\eta}(\sigma)\right)-(n+1)} .
\end{gathered}
$$

- σ will not contribute to the limit unless $\left\langle\delta \gamma^{-1} \delta \gamma, \epsilon \delta \sigma \delta \sigma^{-1} \epsilon\right\rangle$ has two orbits, i.e. ϵ is constant on the cycles of σ (write $\epsilon \delta \sigma \delta \sigma^{-1} \epsilon=\delta \epsilon \sigma \epsilon \delta(\epsilon \sigma \epsilon)^{-1}$)
- if ϵ is constant on the cycles of σ there is $\sigma_{\epsilon} \in S_{n}$ such that $\epsilon \delta \sigma \delta \sigma^{-1} \epsilon=\delta \sigma_{\epsilon} \delta \sigma_{\epsilon}^{-1}$ (if $\sigma=c_{1} c_{2} \cdots c_{k}$ then $\sigma_{\epsilon}=c_{1}^{\lambda_{1}} \cdots c_{k}^{\lambda_{k}}$ where λ_{i} is the sign of ϵ on c_{i})
- then $\frac{1}{2} \#\left(\delta \gamma^{-1} \delta \gamma \cdot \epsilon \delta \sigma \delta \sigma^{-1} \epsilon\right)=\#\left(\gamma \sigma_{\epsilon}^{-1}\right)$
- $\#(\sigma)+f_{\epsilon}(\sigma)=\#\left(\sigma_{\epsilon}\right)+\#\left(\gamma \sigma_{\epsilon}^{-1}\right) \leqslant n+1$ with equality only if σ_{ϵ} is non-crossing
- $\#(\sigma)+f_{\eta}(\sigma)=\#\left(\sigma_{\eta}\right)+\#\left(\gamma \sigma_{\eta}^{-1}\right) \leqslant n+1$ with equality only if σ_{η} is non-crossing

$$
\begin{gathered}
\mathrm{E}\left(\operatorname{tr}\left(W^{\left(\epsilon_{1}, \eta_{1}\right)} \cdots W^{\left(\epsilon_{n}, \eta_{n}\right)}\right)\right) \\
=\sum_{\sigma \in S_{n}}\left(\frac{d_{1}}{\sqrt{p}}\right)^{f_{\epsilon}(\sigma)-1}\left(\frac{d_{2}}{\sqrt{p}}\right)^{f_{\mathfrak{\eta}}(\sigma)-1}+O\left(\frac{1}{p^{2}}\right) .
\end{gathered}
$$

where the sum runs over σ such that

- ϵ and η are constant on the cycles of σ and
- both σ_{ϵ} and σ_{η} are non-crossing.
- if $\epsilon \neq \eta$ on a cycle of σ then this cycle must be either a fixed point or a pair; $\sigma_{\epsilon}=\sigma_{\eta}$ and so $f_{\epsilon}(\sigma)=f_{\eta}(\sigma)$
- σ can only connect $W^{(1,1)}$ to another $W^{(1,1)}$, a $W^{(-1,1)}$ to another $W^{(-1,1)}$, a $W^{(1,-1)}$ to another $W^{(1,-1)}$, and a $W^{(-1,-1)}$ to another $W^{(-1,-1)}$
- this is the rule for a free family, thus $\left\{W, W^{\top}, W^{\Gamma}, W^{\mathrm{T}}\right\}$ form an asymptotically free family
- this can be extended to $M_{d_{1}}(\mathbf{C}) \otimes \cdots \otimes M_{d_{k}}(\mathbf{C})$, same calculation

