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Outlines
• Linear Programming (LP) and the Simplex 

Method
• Markov Decision Process (MDP) and its LP 

Formulation
• Simplex and policy-iteration methods for MDP 

and Zero-Sum Game with fixed discounts
• Simplex method for general non-degenerate 

LP (including the unbounded case) 
• Open Problems
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Linear Programming started… 
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… with the simplex method
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LP  Model in Dimension d
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The feasible region is a polyhedron defined by n inequalities in d 
dimensions. 
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LP Geometry and Theorems
• Optimize a linear objective function over a 

convex polyhedron, and there is always a 
vertex optimal solution.
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The Simplex Method
• Start with any vertex, and move to an 

adjacent vertex with an improved objective 
value. Continue this process till no 
improvement.
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Pivoting rules …
• The simplex method is governed by a pivot 

rule, i.e. a method of choosing adjacent 
vertices with a better objective function 
value. 

• Dantzig's original greedy pivot rule.
• The lowest index pivot rule.
• The random edge pivot rule chooses, from 

among all improving pivoting steps (or 
edges) from the current basic feasible 
solution (or vertex), one uniformly at 
random.
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Markov Decision Process
• Markov decision process provides a mathematical 

framework for modeling sequential decision-
making in situations where outcomes are partly 
random and partly under the control of a decision 
maker.

• MDPs are useful for studying a wide range of 
optimization problems solved via dynamic 
programming, where it was known at least as early 
as the 1950s (cf. Shapley 1953, Bellman 1957).

• Modern applications include dynamic planning, 
reinforcement learning, social networking, and 
almost all other dynamic/sequential decision 
making problems in Mathematical, Physical, 
Management, Economics, and Social Sciences.
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States and Actions
• At each time step, the process is in some state i = 

1, ...,m, and the decision maker chooses an action j ∈ 
Ai that is available for state i, say of total n actions.

• The process responds at the next time step by 
randomly moving into a new state i’ , and giving the 
decision maker an immediate corresponding cost cj.

• The probability that the process enters i’  as its new 
state is influenced by the chosen action j . 
Specifically, it is given by the state transition 
probability distribution Pj.

• But given action j , the probability is conditionally 
independent of all previous states and actions; in 
other words, the state transitions of an MDP possess 
the Markov property.
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A Simple MDP Problem I
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Policy and Discount Factor

• A policy of MDP is a set function π = { j1, j2,   ・ ・

 ・ , jm } that specifies one action ji ∈ Ai that the 
decision maker will choose for each state i .

• The MDP is to find an optimal (stationary) policy to 
minimize the expected discounted sum over an 
infinite horizon with a discount factor 0 ≤ γ < 1.

• One can obtain an LP that models the MDP problem 
in such a way that there is a one-to-one 
correspondence between policies of the MDP and 
basic feasible solutions of the (dual) LP, and between 
improving switches and improving pivots.
de Ghellinck (1960), D’Epenoux (1960) and 
Manne (1960)
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Cost-to-Go-Values
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Cost-to-Go values and LP formulation
• Let y ∈ Rm represent the expected present cost-

to-go values of the m states, respectively, for a 
given policy. Then, the cost-to-go vector of the 
optimal policy is a Fixed Point of

• Such a fixed point computation can be formulated 
as an LP
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The dual of the MDP-LP

where eij =1 if j ∈ Ai and 0 otherwise.

Dual variable xj  represents the expected action 
flow or visit-frequency, that is, the expected 
present value of the number of times action j  is 
used.
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Greedy Simplex Rule

Chosen actions in Red
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Lowest-Index Simplex Rule

Chosen actions in Red



November 2013 Yinyu Ye

Policy Iteration Rule (Howard 1960)

Chosen actions in Red
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Exponentially bad examples
• Klee and Minty (1972) showed that Dantzig's 

original greedy pivot rule may require 
exponentially many steps for a LP example.

• Melekopoglou and Condon (1990) showed that 
the simplex method with the smallest index pivot 
rule needs an exponential number of iterations 
for a MDP example regardless of discount factors.

• Fearnley (2010) showed that the policy-iteration 
method needs an exponential number of 
iterations for a undiscounted finite-horizon MDP 
example.

• Friedmann, Hansen and Zwick (2011) gave an 
undiscounted MDP example that the random edge 
pivot rule needs sub-exponentially many steps.
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Any Good News?

• In practice, the policy-iteration method, 
including the simplex method with greedy 
pivot rule, has been remarkably successful 
and shown to be most effective and widely 
used.

• Any good news in theory?
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Bound on the simplex/policy methods
• Y (2011): The classic simplex and policy iteration 

methods, with the greedy pivoting rule, terminate 
in no more than

pivot steps, where n is the total number of actions 
in an m-state MDP with discount factor γ. 

• This is a strongly polynomial-time upper bound 
when γ is bounded above by a constant less than 
one.
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Roadmap of proof

• Define a combinatorial event that cannot repeats more 
than n times. More precisely, at any step of the pivot 
process, there exists a non-optimal action j that will 
never re-enter future policies or bases after 

pivot steps
• There are at most (n - m) such non-optimal action to 

eliminate from appearance in any future policies 
generated by the simplex or policy-iteration method.

• The proof relies on the duality, the reduced-cost 
vector at the current policy and the optimal reduced-
cost vector to provide a lower and upper bound for a 
non-optimal action when the greedy rule is used.
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Improvement and extension

Hansen, Miltersen and Zwick (2011):
• For the policy iteration method terminates in no 

more

steps.

• The simplex and policy iteration methods, with 
the greedy pivoting rule, are strongly polynomial-
time algorithms for Turn-Based Two-Person 
Zero-Sum Stochastic Game with any fixed 
discount factor, which problem cannot even be 
formulated as an LP.
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A Turn-Based Zero-Sum Game
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Deterministic MDP with discounts
Distribution vector pj ∈ Rm contains exactly one 1 
and 0 everywhere else
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It has uniform discounts if all γj are identical.
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The dual resembles a generalized flow

where eij =1 if j ∈ Ai and 0 otherwise.

Dual variable xj  represents the expected action 
flow or frequency, that is, the expected present 
value of the number of times action j  is chosen.
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Efficiency of simplex/policy methods
• They are not known to be polynomial-time algorithms for 

deterministic MDP even with uniform discounts.
• There are quadratic lower bounds on these methods for 

solving MDP with uniform discounts.
• Ian Post and Y (2012): The Simplex method with the greedy 

pivot rule terminates in at most

pivot steps when discount factors are uniform, or in at most

pivot steps with non-uniform discounts.
• Hansen, Miltersen and Zwick (2013) reduced the bound by a 

factor of m.
• Not yet able to prove such results for the policy iteration 

method.
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Policy structures with uniform factors

Each chosen action can be either a path-edge or 
cycle-edge.

xj in [ 1, m ] if it is a path-action, 
xj in [ 1/(1-γ), m/(1-γ) ] if it is a cycle-action, so that they 
form two possible polynomial layers.
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Roadmap of proof

• There two types of pivots: the newly chosen 
action is either on a path or on a cycle of the new 
policy. 

• In every m2n log(m ) consecutive pivot steps, 
there must be at least one step that is a cycle 
pivot.

• After every m log(m ) cycle pivot steps, there is an 
action that would never re-enter as a cycle or 
path action. 

• There are at most n action for such a down-
grade.

• Item 2 result remains true when discounts are not 
uniform, but others do not hold.
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General non-degenerate LP
• Kitahara and Mizuno (2011) extended the bound to solving 

general non-degenerate and bounded LPs:

• The simplex method terminates in at most

pivot steps, when the ratio of the minimum value over the 
maximum value, in all basic feasible solution entries, is 
bounded below by σ.
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General non-degenerate LP
• What about for general non-degenerate LPs with possible 

unboundedness:

• The simplex method terminates in at most

pivot steps, either finds an optimal basic feasible solution or 
detects the unboundedness.
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Proof sketch I
• Let the objective value of the last basic feasible solution be 

z*, and consider the “shadow” LP problem

• Obviously, the shadow LP is bounded with a minimal value z*.
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Proof sketch II

• The simplex method with the greedy pivoting rule, applied to 
the original LP, would generate the identical solution and 
reduced cost sequence as it is applied to the “shadow” LP in 
which Xn+1 remains a basic variable before detects 
unboundedness.

• In the shadow LP, the basic variable values (excluding Xn+1) 
satisfy the σ property.

• In at most                        pivoting steps, the shadow LP find the 
optimal basic feasible solution that is the last basic feasible solution 
of the original LP before detecting unboundedness.
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The Simplex Method Story Continues …

•Other pivoting rules?

•Is the policy iteration method a strongly polynomial 
time algorithm for deterministic MDP?

•Is there strongly polynomial time algorithm for MDP 
with variable discounts or even general LP?

•Solve LPs with a huge size (billion-dimension) in 
practice?

Remarks and Open Problems


	Slide 1
	Outlines
	Linear Programming started… 
	… with the simplex method
	LP  Model in Dimension d
	LP Geometry and Theorems
	The Simplex Method
	Pivoting rules …
	Markov Decision Process
	States and Actions
	A Simple MDP Problem I
	Policy and Discount Factor
	Cost-to-Go-Values
	Cost-to-Go values and LP formulation
	The dual of the MDP-LP
	Greedy Simplex Rule
	Lowest-Index Simplex Rule
	Policy Iteration Rule (Howard 1960)
	Exponentially bad examples
	Any Good News?
	Bound on the simplex/policy methods
	Roadmap of proof
	Improvement and extension
	A Turn-Based Zero-Sum Game
	Deterministic MDP with discounts
	The dual resembles a generalized flow
	Efficiency of simplex/policy methods
	Policy structures with uniform factors
	Slide 29
	General non-degenerate LP
	Slide 31
	Proof sketch I
	Proof sketch II
	The Simplex Method Story Continues …

