Three-wave resonant interactions: Part 2

Ruth Martin

Department of Applied Math
University of Colorado at Boulder
Advised by Harvey Segur

11 January, 2014

Introduction

$$
\frac{\partial A_{m}}{\partial \tau}+\mathbf{c}_{m} \cdot \nabla A_{m}=i \gamma_{m} A_{k}^{*} A_{\ell}^{*}
$$

- From the previous talk, we know that the solutions to the three-wave equations have a formal series expansion with five free functions of x.
- We want to show that this expansion is actually meaningful.
- To that end, we look for a radius of convergence for the Laurent series solution to the three-wave PDEs.
- We use what we know about the convergence of the series solution of the ODEs in order to find a radius of convergence for the series solution of the PDEs.

The three-wave equations

- Let $A_{m}=-\frac{i a_{m}}{\sqrt{\left|\gamma_{k} \gamma_{l}\right|}}$ and restrict our attention to one spatial dimension so that the three-wave equations become

$$
\frac{\partial a_{m}}{\partial \tau}+c_{m} \frac{\partial a_{m}}{\partial x}=\sigma_{m} a_{k}^{*} a_{\ell}^{*}
$$

with $\sigma_{m}=\operatorname{sign}\left(\gamma_{m}\right)$.

The three-wave ODEs

- Without spatial dependence, we have

$$
\begin{equation*}
\frac{d a_{m}}{d \tau}=\sigma_{m} a_{k}^{*} a_{\ell}^{*} \tag{1}
\end{equation*}
$$

- There are three associated conserved quantities:

$$
\begin{aligned}
-i H & =a_{1} a_{2} a_{3}-a_{1}^{*} a_{2}^{*} a_{3}^{*}, \\
K_{2} & =\sigma_{1}\left|a_{1}\right|^{2}-\sigma_{2}\left|a_{2}\right|^{2}, \\
K_{3} & =\sigma_{1}\left|a_{1}\right|^{2}-\sigma_{3}\left|a_{3}\right|^{2},
\end{aligned}
$$

where H, K_{2}, and K_{3} are real constants.

- The ODEs (1) constitute a Hamiltonian system.

The three-wave ODEs

$$
\frac{d a_{m}}{d \tau}=\sigma_{m} a_{k}^{*} a_{\ell}^{*}
$$

- We can reduce our system of ODEs to a lower dimensional Hamiltonian system.
- Write $a_{m}(\tau)=\left|a_{m}(\tau)\right| e^{i \varphi_{m}(\tau)}, m=1,2,3$.
- Define:

$$
\rho=\sigma_{1}\left|a_{1}\right|^{2} \quad \text { and } \quad \Phi=\varphi_{1}+\varphi_{2}+\varphi_{3} .
$$

The Hamiltonian system

- The reduced Hamiltonian system is:

$$
\begin{aligned}
& H=-2 \sqrt{\sigma \rho\left(\rho-K_{2}\right)\left(\rho-K_{3}\right)} \sin \Phi \\
& \frac{d \rho}{d \tau}=2 \sqrt{\sigma \rho\left(\rho-K_{2}\right)\left(\rho-K_{3}\right)} \cos \Phi \\
& \frac{d \Phi}{d \tau}=-\left(\sigma_{1} \sqrt{\frac{\sigma\left(\rho-K_{2}\right)\left(\rho-K_{3}\right)}{\rho}}+\sigma_{2} \sqrt{\frac{\sigma \rho\left(\rho-K_{3}\right)}{\rho-K_{2}}}\right. \\
&\left.+\sigma_{3} \sqrt{\frac{\sigma \rho\left(\rho-K_{2}\right)}{\rho-K_{3}}}\right) \sin \Phi, \\
& \text { with } \sigma=\sigma_{1} \sigma_{2} \sigma_{3}, \rho=\sigma_{1}\left|a_{1}\right|^{2}, \Phi=\varphi_{1}+\varphi_{2}+\varphi_{3}
\end{aligned}
$$

Solution of the Hamiltonian system

- Solve the Hamiltonian system analytically in the complex plane to find the solution in terms of the Weierstrass elliptic function:

$$
\begin{aligned}
& \rho(\tau)=\sigma \wp\left(\tau-k ; g_{2}, g_{3}\right)+\frac{K_{2}+K_{3}}{3} \\
& \Phi(\tau)=2 \arctan \left\{\tan \left(\frac{\Phi_{0}}{2}\right) \exp \left[\int_{0}^{\tau} f(\rho(t)) d t\right]\right\},
\end{aligned}
$$

where

$$
\begin{aligned}
g_{2} & =\frac{4}{3}\left(K_{2}^{2}+K_{3}^{2}-K_{2} K_{3}\right), \\
g_{3} & =\frac{4 \sigma}{27}\left(K_{2}-2 K_{3}\right)\left(2 K_{2}-K_{3}\right)\left(K_{2}+K_{3}\right)+H^{2}, \\
f(\rho) & =-\sigma_{1} \sqrt{\frac{\sigma\left(\rho-K_{2}\right)\left(\rho-K_{3}\right)}{\rho}}-\sigma_{2} \sqrt{\frac{\sigma \rho\left(\rho-K_{3}\right)}{\rho-K_{2}}}-\sigma_{3} \sqrt{\frac{\sigma \rho\left(\rho-K_{2}\right)}{\rho-K_{3}}} .
\end{aligned}
$$

Example solution

$$
|\rho(\tau)|
$$

$$
\begin{aligned}
& \sigma_{1}=\sigma_{2}=\sigma_{3}=1 \\
& K_{2}=1, K_{3}=2 \\
& \rho_{0}=2.5, \text { and } \Phi_{0}=\frac{\pi}{3} \\
& \omega_{1} \approx 1.058, \\
& \omega_{2} \approx 0.529+1.082 i
\end{aligned}
$$

Laurent series expansion for the ODEs

- The explosive case is well understood.
- We can determine the general solution to the ODEs in terms of a Laurent series:

$$
\begin{aligned}
a_{m}(\tau)=\frac{e^{i \theta_{m}}}{\tau_{0}-\tau}\left[1+\alpha_{m}\left(\tau_{0}-\tau\right)\right. & +\beta_{m}\left(\tau_{0}-\tau\right)^{2} \\
& \left.+\delta_{m}\left(\tau_{0}-\tau\right)^{3}+\mathcal{O}\left(\tau_{0}-\tau\right)^{4}\right]
\end{aligned}
$$

where

$$
\begin{array}{rlrl}
\alpha_{m} & =0, & & \\
\operatorname{Im}\left(\beta_{m}\right) & =0, & \operatorname{Re}\left(\beta_{1}+\beta_{2}+\beta_{3}\right)=0, \\
\operatorname{Re}\left(\delta_{m}\right) & =0, & \operatorname{Im}\left(\delta_{1}\right)=\operatorname{Im}\left(\delta_{1}\right)=\operatorname{Im}\left(\delta_{1}\right)=\delta
\end{array}
$$

Laurent series expansion for the ODEs

$$
\begin{aligned}
a_{m}(\tau)=\frac{e^{i \theta_{m}}}{\tau_{0}-\tau}\left[1+\beta_{m}\right. & \left.\left(\tau_{0}-\tau\right)^{2}+\delta\left(\tau_{0}-\tau\right)^{3}+\mathcal{O}\left(\tau_{0}-\tau\right)^{4}\right] \\
\beta_{1} & =\frac{\sigma}{6}\left(K_{2}+K_{3}\right) \\
\beta_{2} & =\frac{\sigma}{6}\left(K_{3}-2 K_{2}\right) \\
\beta_{3} & =\frac{\sigma}{6}\left(K_{2}-2 K_{3}\right) \\
\delta & =-\frac{i \sigma H}{6}
\end{aligned}
$$

There are six free, real-valued constants in the general solution: $\left\{\theta_{1}, \theta_{2}, \tau_{0}, K_{1}, K_{2}, H\right\}$.

The case $K_{2}=K_{3}=0$

$$
\text { Let } K_{2}=K_{3}=0 \text {. Then }
$$

$$
\begin{aligned}
a_{m}(\tau) & =\frac{e^{i \theta_{m}}}{\tau_{\tau_{0}}-\tau}\left[1-\frac{i \sigma H}{6}\left(\tau_{0}-\tau\right)^{3}+\frac{H^{2}}{252}\left(\tau_{0}-\tau\right)^{6}+\mathcal{O}\left(\tau_{0}-\tau\right)^{9}\right] \\
& =\frac{e^{i \theta_{m}}}{\xi} \sum_{n=0}^{\infty} A_{3 n} \xi^{3 n},
\end{aligned}
$$

where $\xi=\tau_{0}-\tau, A_{0}=1, A_{3}=-i \sigma H / 6$, and

$$
(3 n-1) A_{3 n}+2 A_{3 n}^{*}=-\sum_{p=1}^{n-1} A_{3 p}^{*} A_{3(n-p)}^{*}, \quad \text { for } n \geq 2 .
$$

Finding the radius of convergence

- We can determine the radius of convergence using the Weierstrass solution, since $a_{m}(\tau)=\sqrt{\sigma \rho(\tau)} e^{i \varphi_{m}(\tau)}$.
- $R=\min \left\{2\left|\omega_{1}\right|, 2\left|\omega_{2}\right|\right\}$
- When $K_{2}=K_{3}=0$, we have

$$
g_{2}=0, \quad g_{3}=H^{2}, \quad \text { and } \quad \omega_{1}=e^{-i \pi / 3} \omega_{2}=\frac{\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}}{4 \pi g_{3}^{1 / 6}}
$$

- That is,

$$
R=\frac{2\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}}{4 \pi|H|^{1 / 3}} \approx \frac{3.06}{|H|^{1 / 3}}
$$

Finding the radius of convergence

- We can check numerically that this exact value of R agrees with the radius of convergence provided by the ratio test.
- Since $a_{m}(\tau)=\frac{e^{i \theta_{m}}}{\xi} \sum_{n=0}^{\infty} A_{3 n} \xi^{3 n}$, the ratio test tells us that the series converges when

$$
\lim _{n \rightarrow \infty}\left|\frac{A_{3(n+1)} \xi^{3(n+1)}}{A_{3 n} \xi^{3 n}}\right|<1
$$

or

$$
|\xi|<\left(\lim _{n \rightarrow \infty}\left|\frac{A_{3(n+1)}}{A_{3 n}}\right|\right)^{-1 / 3} \approx \frac{3.06}{|H|^{1 / 3}}=R .
$$

- Note that this implies $\lim _{n \rightarrow \infty}\left|\frac{A_{3(n+1)}}{A_{3 n}}\right|=1 / R^{3}$.

Laurent series expansion for the PDEs

- In the explosive case, we look for a general solution to the PDEs in terms of a Laurent series in τ :

$$
\begin{aligned}
a_{m}(x, \tau)=\frac{e^{i \theta_{m}(x)}}{\tau_{0}-\tau}\{1 & +\left[B_{m}^{\mathrm{Re}}(x)+i B_{m}^{\operatorname{Im}}(x)\right]\left(\tau_{0}-\tau\right) \\
& +\left[C_{m}^{\mathrm{Re}}(x)+i C_{m}^{\operatorname{Im}}(x)\right]\left(\tau_{0}-\tau\right)^{2} \\
& \left.+\left[D_{m}^{\mathrm{Re}}(x)+i D_{m}^{\operatorname{Im}}(x)\right]\left(\tau_{0}-\tau\right)^{3}+\cdots\right\}
\end{aligned}
$$

- There will be five free functions of x,

$$
\left\{\theta_{1}(x), \theta_{2}(x), C_{1}^{\mathrm{Re}}(x), C_{2}^{\mathrm{Re}}(x), D_{1}^{\mathrm{Im}}(x)\right\}
$$

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

- We start by restricting our attention to the case where θ_{m} is constant for $m=1,2,3$, and $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$.
- In this case, we have

$$
\begin{aligned}
B_{m}^{\mathrm{Re}}(x)=B_{m}^{\mathrm{Im}}(x) & =0, \\
C_{m}^{\operatorname{Im}}(x) & =0,
\end{aligned}
$$

$$
D_{m}^{\mathrm{Re}}(x)=0, \quad D_{1}^{\mathrm{Im}}(x)=D_{2}^{\mathrm{Im}}(x)=D_{3}^{\mathrm{Im}}(x)=\frac{H(x)}{6}
$$

so that

$$
a_{m}(x, \tau)=\frac{e^{i \theta_{m}}}{\tau_{0}-\tau}\left[1+\frac{i H(x)}{6}\left(\tau_{0}-\tau\right)^{3}+\mathcal{O}\left(\tau_{0}-\tau\right)^{4}\right]
$$

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

- In this simple case, with $\xi=\tau_{0}-\tau$, we now have

$$
a_{m}(x, \tau)=\frac{e^{i \theta_{m}}}{\xi} \sum_{n=0}^{\infty} A_{n}^{m}(x) \xi^{n}
$$

where for $m=1,2,3$,

$$
A_{0}^{m}(x)=1, \quad A_{1}^{m}(x)=A_{2}^{m}(x)=0, \quad A_{3}^{m}(x)=\frac{i H(x)}{6},
$$

and

$$
(n-1) A_{n}^{m}+A_{n}^{k^{*}}+A_{n}^{\ell^{*}}=c_{m} A_{n-1}^{m^{\prime}}-\sum_{p=3}^{n-3} A_{p}^{k^{*}} A_{n-p}^{\ell^{*}}, \quad \text { for } n \geq 4
$$

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

$$
\begin{aligned}
a_{m}(x, \tau) & =\frac{e^{i \theta_{m}}}{\xi}\left\{1+\frac{i H(x)}{6} \xi^{3}+\frac{i}{24}\left(2 c_{m}+c_{k}+c_{\ell}\right) H^{\prime}(x) \xi^{4}\right. \\
& \left.+\frac{i}{120}\left(3 c_{m}^{2}+c_{k}^{2}+c_{k} c_{\ell}+c_{\ell}^{2}+2 c_{m}\left(c_{k}+c_{\ell}\right)\right) H^{\prime \prime} \xi^{5}+\cdots\right\}
\end{aligned}
$$

- We want to know the radius of convergence for the series expansion of $a_{m}(x, \tau)$.
- For further simplification, we consider a particular family of functions $H(x)$, for which:

$$
\left\|H^{(n)}(x)\right\|=k^{n}\|H\|
$$

- Example: $H(x)=B \sin k x$ or $H(x)=B \cos k x$.

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

- Let $c=\max \left\{\left|c_{1}\right|,\left|c_{2}\right|,\left|c_{3}\right|\right\}$.

$$
\begin{aligned}
\left|a_{m}(x, \tau)\right| \leq & \frac{1}{|\xi|}\left\{1+\frac{\|H\|}{6}|\xi|^{3}+\frac{\|H\|}{6} c k|\xi|^{4}+\frac{\|H\|}{12}(c k)^{2}|\xi|^{5}\right. \\
& \left.+\left[\frac{\|H\|^{2}}{252}+\frac{\|H\|}{36}(c k)^{3}\right]|\xi|^{6}+\cdots\right\} \\
= & \frac{1}{|\xi|}\left[1+\sum_{n=3}^{\infty} \sum_{p=1}^{\lfloor n / 3\rfloor} q_{n, p}(c k)^{n-3 p}|\xi|^{n}\right]
\end{aligned}
$$

where $q_{n, p}$ are constants.

- Example: The coefficient of $|\xi|^{9}$ is:

$$
q_{9,1}(c k)^{6}+q_{9,2}(c k)^{3}+q_{9,3}=\frac{\|H\|}{4320}(c k)^{6}+\frac{\|H\|^{2}}{189}(c k)^{3}+\frac{\|H\|^{3}}{4536} .
$$

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

- It turns out to be easier to sum down diagonals instead of rows. The index p in $q_{n, p}$ then refers to the p th diagonal.

n	(ck) ${ }^{0}$	$(\mathrm{ck})^{1}$	$(\mathrm{ck})^{2}$	$(\mathrm{ck})^{3}$	$(\mathrm{ck})^{4}$	$(\mathrm{ck})^{5}$	$(\mathrm{ck})^{6}$	$(\mathrm{ck})^{7}$	$(\mathrm{ck})^{8}$			
3	$\frac{\|\|\mathrm{H}\|\|}{6}$	0	0	0	0	0	0	0	0			
4	0	$\frac{\|\|\mathrm{H}\|\|}{6}$	0	0	0	0	0	0	0			
5	0	0	$\frac{\|\|\mathrm{H}\|\|}{12}$	0	0	0	0	0	0			
6	$\frac{\\| \text { H\| } \\|^{2}}{252}$	0	0	$\frac{1 \mid \mathrm{H\|\|\mid}}{36}$	0	0	0	0	0			
7	0	$\frac{\\| \text { (1) } \\|^{2}}{126}$	0	0	$\frac{\|\|H\|\|}{144}$	0	0	0	0			
8	0	0	$\frac{\\| \text { H\| }\left.\right\|^{2}}{126}$	0	0	$\frac{1\|\mathrm{H}\| \mid}{720}$	0	0	0			
9	$\frac{\\| \text { H\| } \\|^{3}}{4536}$	0	0	$\frac{\left\|\mid \boldsymbol{H} \\|^{2}\right.}{189}$	0	0	$\frac{\|\|\mathrm{H}\| 1}{4320}$	0	0			
10	0	$\frac{\|\|\mathrm{H}\|\|^{3}}{1512}$	0	0	$\frac{\|\mid \mathbf{H \| \| ~}}{}{ }^{2}$	0	0	$\frac{\|14\| \mid}{30240}$	0			
11	0	0	$\frac{\\| \text { H\| }\left.\right\|^{3}}{1008}$	0	0	$\frac{\|\mid \text { H }\|^{2}}{}{ }^{2}$	0	0	$\frac{1\|\mathrm{H}\| \mid}{241920}$			
12	$\frac{11\|\|\mathrm{H}\|\|^{4}}{2476656}$	0	0	$\frac{\left.1\|\mathrm{H}\|\right\|^{3}}{1008}$	0	0	$\frac{\\| \text { H } \\|_{\mid}{ }^{2}}{2835}$	0	0			
13	0	$\frac{11\|\|\mathrm{~B}\|\|^{4}}{619164}$	0	0	$\frac{1 \mid \text { H }\left.\right\|^{3}}{1344}$	0	0	$\frac{2\|\mid \mathrm{H\|\|}}{}{ }^{2} 8845$	0			

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

- Rewrite the double sum:

$$
\begin{equation*}
\left|a_{m}(x, \tau)\right| \leq \frac{1}{|\xi|}\left[1+\sum_{p=1}^{\infty} \sum_{n=3 p}^{\infty} q_{n, p}(c k)^{n-3 p}|\xi|^{n}\right] \tag{2}
\end{equation*}
$$

- We can prove that

$$
q_{n, p}=\frac{p^{n-3 p}}{(n-3 p)!} \cdot q_{3 p, p}, \quad \text { for } n \geq 3 p
$$

- The constants $q_{3 p, p}$ are the constants found in the first column of the table.

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

The inner sum in (2) has a simple closed form:

$$
\begin{aligned}
\sum_{n=3 p}^{\infty} q_{n, p}(c k)^{n-3 p}|\xi|^{n} & =\sum_{n=3 p}^{\infty} \frac{p^{n-3 p}}{(n-3 p)!} \cdot q_{3 p, p} \cdot(c k)^{n-3 p}|\xi|^{n} \\
& =q_{3 p, p}|\xi|^{3 p} \sum_{n=0}^{\infty} \frac{(c k p|\xi|)^{n}}{n!} \\
& =q_{3 p, p}|\xi|^{3 p} e^{c k p|\xi|}
\end{aligned}
$$

The case where $C_{1}^{\mathrm{Re}}(x)=C_{2}^{\mathrm{Re}}(x)=0$

The bound (2) becomes

$$
\begin{aligned}
\left|a_{m}(x, \tau)\right| & \leq \frac{1}{|\xi|}\left[1+\sum_{p=1}^{\infty} q_{3 p, p}|\xi|^{3 p} e^{c k p|\xi|}\right] \\
& =\frac{1}{|\xi|} \sum_{p=0}^{\infty} q_{3 p, p}|\xi|^{3 p} e^{c k p|\xi|},
\end{aligned}
$$

where we defined $q_{0,0}=1$.

Finding the radius of convergence

- Finally, we apply the ratio test to find the radius of convergence:

$$
\begin{aligned}
\lim _{p \rightarrow \infty}\left|\frac{q_{3(p+1), p+1}|\xi|^{3(p+1)} e^{c k(p+1)|\xi|}}{q_{3 p, p}|\xi|^{3 p} e^{c k p|\xi|}}\right| & <1 \\
|\xi|^{3} e^{c k|\xi|} \cdot \lim _{p \rightarrow \infty}\left|\frac{q_{3(p+1), p+1}}{q_{3 p, p}}\right| & <1 .
\end{aligned}
$$

- However, the numbers $q_{3 p, p}$ are the coefficients in the Laurent series for the ODEs. We know the radius of convergence in that case, so

$$
\lim _{p \rightarrow \infty}\left|\frac{q_{3(p+1), p+1}}{q_{3 p, p}}\right|=\lim _{p \rightarrow \infty}\left|\frac{A_{3(p+1)}}{A_{3 p}}\right|=\frac{1}{R^{3}}=\frac{(4 \pi)^{3}|H|^{1 / 3}}{2\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}} .
$$

Finding the radius of convergence

- We now know

$$
\lim _{p \rightarrow \infty}\left|\frac{q_{3(p+1), p+1}}{q_{3 p, p}}\right|=\frac{(4 \pi)^{3} \cdot\|H\|}{2^{3}\left[\Gamma\left(\frac{1}{3}\right)\right]^{9}} .
$$

- As a result, the Laurent series expansion for the PDEs converges when

$$
|\xi|^{3} e^{c k|\xi|} \cdot \frac{(4 \pi)^{3} \cdot\|H\|}{2^{3}\left[\Gamma\left(\frac{1}{3}\right)\right]^{9}}<1,
$$

or

$$
\left|\tau_{0}-\tau\right| e^{\frac{c k\left|\tau_{0}-\tau\right|}{3}}<\frac{2\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}}{4 \pi \cdot\|H\|^{1 / 3}} \approx \frac{3.06}{\|H\|^{1 / 3}}
$$

Comparison with ODEs

- The radius of convergence for the PDEs is smaller than that for the ODEs due to the factor of $e^{\frac{c k\left|\tau_{0}-\tau\right|}{3}}$.
- ODEs:

$$
\left|\tau_{0}-\tau\right|<\frac{2\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}}{4 \pi|H|^{1 / 3}} \approx \frac{3.06}{|H|^{1 / 3}} .
$$

- PDEs:

$$
\left|\tau_{0}-\tau\right| e^{\frac{c k\left|\tau_{0}-\tau\right|}{3}}<\frac{2\left[\Gamma\left(\frac{1}{3}\right)\right]^{3}}{4 \pi \cdot\|H\|^{1 / 3}} \approx \frac{3.06}{\|H\|^{1 / 3}}
$$

PDEs: Another simple case

- An alternative approach is to keep the phases constant, but set $D_{1}^{\mathrm{Im}}(x)=0$ and pick $C_{1}^{\mathrm{Re}}(x)$ and $C_{2}^{\mathrm{Re}}(x)$ to be nonzero.
- In the ODE case, this is equivalent to setting $H=0$, and keeping K_{2} and K_{3} nonzero.
- A particularly special case is that corresponding to $K_{3}=2 K_{2}$. Much of the analysis is the similar, though slightly more complicated, to the previous case. We find

ODEs:

$$
\left|\tau_{0}-\tau\right|<\frac{2\left[\Gamma\left(\frac{1}{4}\right)\right]^{2}}{1024^{1 / 4} \cdot \pi^{1 / 2} \cdot\|K\|^{1 / 2}} \approx \frac{2.62}{\|K\|^{1 / 2}}
$$

PDEs: $\quad\left|\tau_{0}-\tau\right| e^{\frac{c k\left|\tau_{0}-\tau\right|}{2}}<\frac{2\left[\Gamma\left(\frac{1}{4}\right)\right]^{2}}{1024^{1 / 4} \cdot \pi^{1 / 2} \cdot\|K\|^{1 / 2}} \approx \frac{2.62}{\|K\|^{1 / 2}}$.

Results and future problems

- In two cases, we have found that the radius of convergence for the Laurent series solution to the three-wave PDEs is smaller than the radius of convergence for the three-wave ODEs by a known factor.
- The factor depends only on the largest group velocity (in magnitude) and the rate at which the derivatives of the free functions grow.
- We would like to determine whether this is true in general, for more than the two special cases we discussed.
- That is, we want to find a more general radius of convergence for the case where $D_{1}^{\operatorname{Im}}(x), C_{1}^{\mathrm{Re}}(x)$, and $C_{2}^{\mathrm{Re}}(x)$ are all nonzero.
- We would like to determine what happens when we no longer force the phases to be constant.

Results and future problems

- In two cases, we have found that the radius of convergence for the Laurent series solution to the three-wave PDEs is smaller than the radius of convergence for the three-wave ODEs by a known factor.
- The factor depends only on the largest group velocity (in magnitude) and the rate at which the derivatives of the free functions grow.
- We would like to determine whether this is true in general, for more than the two special cases we discussed.
- That is, we want to find a more general radius of convergence for the case where $D_{1}^{\mathrm{Im}}(x), C_{1}^{\mathrm{Re}}(x)$, and $C_{2}^{\mathrm{Re}}(x)$ are all nonzero.
- We would like to determine what happens when we no longer force the phases to be constant.

Results and future problems

- We did not impose any boundary conditions in x when constructing our Laurent series for the PDEs. However, we could impose boundary conditions on the free functions of x in the Laurent series. This should allow our representation of the solution to be compatible with many types of boundary conditions.
- Our approach is an alternative to using Inverse Scattering mechanics.
- We still do not know how to specify initial data.
- We do not yet know how to replace τ_{0} with an arbitrary function of x.
- Once we include $\tau_{0}(x)$ in our series, we will have a general solution to the nonlinear PDE within the annulus of convergence.

Thank you for your attention.

