The Hallmarks of Cancer

Thomas Hillen

University of Alberta

September 4, 2024

Cancer

[Kulesza et al. J. Pharmacokinetics and Pharmacodynamics, 2024]

Cancer = multiple aberrant processes across molecular, cellular, organ, and system level levels in space and time.

Cancer

[Kulesza et al. J. Pharmacokinetics and Pharmacodynamics, 2024]

Cancer = multiple aberrant processes across molecular, cellular, organ, and system level levels in space and time.

A tumor is not just a mass of identical cancer cells, but rather a dynamic population of heterogeneous malignant cells that interact with each other and with their microenvironment in ways that influence their growth, survival, and evolution.

Cancer Modelling

 Multiple scales: genes, proteins, cells, tissue, microenvironment (immune cells, angiogenesis, ECM, nutrients, stroma)

Cancer Modelling

- Multiple scales: genes, proteins, cells, tissue, microenvironment (immune cells, angiogenesis, ECM, nutrients, stroma)
- top down: Data inform the models
- bottom up: Biological processes inform the models

Cancer Modelling

- Multiple scales: genes, proteins, cells, tissue, microenvironment (immune cells, angiogenesis, ECM, nutrients, stroma)
- top down: Data inform the models
- bottom up: Biological processes inform the models
- We need to strike a balance between model complexity, available data and interpretability.

The Hallmarks of Cancer

14 Hallmarks in 3 papers by Hanahan and Weinberg:

- Hanahan, Weinberg, Cell 2000
- Hanahan, Weinberg, Cell 2011
- Hanahan, Cancer Discovery, 2022

Hallmarks

(1) Sustained proliferative signalling

Known growth promoters: PTEN, PIP3, PI3K, mTOR, etc.

(1) Sustained proliferative signalling

Known growth promoters: PTEN, PIP3, PI3K, mTOR, etc.

(2) Avoidance of growth suppression

For example loss of P53 signalling, or loss of contact inhibition

(3) Resisting cell death

P53 can signal apoptosis (cell suicide)

(4) Enabling replicative immortality

- telomerases can add telomeres to the cell's DNA and prevent aging.
- unclear: interaction of P53 with telomerase

(5) Angiogenesis

Angiogenesis is the sprouting of new blood vessels

- induced by VEGF, TSP-1 signalling
- supplied tumor with nutrients and oxygen
- supplies immune response
- opens doorway for chemical drugs

Modellers distinguish between vascular and avascular tumors.

(6) Invasion and Metastasis

The metastatic cascade

- 1. local invasion
- 2. intravasation
- 3. dissemination
- 4. extravasation
- micrometastasis.
- 6. Metastasis

Local invasion is based on the endothelial-mesenchymal transition (EMT)

Reverse transition MET is also possible

(7) Genome instability

- cancer increase rate of mutation due to loss of surveillance systems (again P53 involved)
- driver mutations: contribute to tumor initiation and progression.
 Give cancer a distinct evolutionary advantage.
- passenger mutations no or minimal evolutionary advantage.
- full grown cancer has 600-1000 different phenotypes.

(8) Tumor promoting inflammation

- inflammation can contribute to the first six hallmarks, growth factors, proliferative signalling, angiogenesis, metastasis, etc.
- immune response can make everything worse.
- But, Immune response is the major control for all tumors that we do not see.

(9) Reprogramming energy metabolism

- normal: glycolysis and oxidative phosphorylation in the mitochondria, creates 30-32 ATP per reaction.
- Warburg: aerobic glycolysis, fermentation, produces 2 ATP, works in acidic conditions.
- Very little modelling in this area.

(10) Avoiding immune destruction

Cancer can reprogram the immune response

- deactivate T-cell response through expression of PD-1.
- reprogram macrophages from M1 to M2
- tumor associate fibroblasts help tumor growth
- platelets protect circulating cancer cell clusters

(11) Phenotypic plasticity

Cells do not follow the normal differentiation process and they use alternative progressions, like

- dedifferentiation
- blocked differentiation
- transdifferentiation

(12) Epigenetic programming

- caused by microenvironment and treatment
- leads to increased heterogeneity
- cancer field effect
- also relevant for stromal cells

(13) Role of the microbiome

- microbiomes play important roles for the health of the gut, the lung, the skin, the reproductive organs.
- microbiome is likely to have a huge impact on cancer progression
- wide open research area.

(14) Senescent cells

- complex signalling
- avoidance of treatments and resistance
- senescent tumor associated fibroblasts are dangerous cancer initiators.

• The hematopoietic stem cells have many of the hallmarks of cancer. They produce billions of cells per day, have unlimited growth, have blood supply, travel to other organs etc.

- The hematopoietic stem cells have many of the hallmarks of cancer. They
 produce billions of cells per day, have unlimited growth, have blood supply, travel
 to other organs etc.
- The atavistic theory of cancer: Cancer uses backwards evolution, i.e. it uses traits that the cells had already in earlier stages of their evolution. [Lineweaver]

- The hematopoietic stem cells have many of the hallmarks of cancer. They
 produce billions of cells per day, have unlimited growth, have blood supply, travel
 to other organs etc.
- The atavistic theory of cancer: Cancer uses backwards evolution, i.e. it uses traits that the cells had already in earlier stages of their evolution. [Lineweaver]
- Chronobiology Cancer growth and treatment are affected by the circadian rhythm, menstrual cycle and other periodic processes. [Clairambeault, Yea Kyong Kim]

- The hematopoietic stem cells have many of the hallmarks of cancer. They
 produce billions of cells per day, have unlimited growth, have blood supply, travel
 to other organs etc.
- The atavistic theory of cancer: Cancer uses backwards evolution, i.e. it uses traits that the cells had already in earlier stages of their evolution. [Lineweaver]
- Chronobiology Cancer growth and treatment are affected by the circadian rhythm, menstrual cycle and other periodic processes. [Clairambeault, Yea Kyong Kim]
- Metronomic therapy: repeated low-dose therapy to avoid resistance. Connection to adaptive evolutionary therapies has not been made. [Ledzewicz]