Oncolytic Virotherapy

Thomas Hillen

University of Alberta

November 20, 2024

Arwa Baabdulla, Negar Mohammadnejad, Morghan van Walsum

Oncolytic Virotherapy

Oncolytic viruses are genetically modified specialized viruses that selectively attack and replicate in tumor cells, while leaving normal tissues unharmed.

Two approved oncolytic viruses:

- T-VEC (herpes): melanoma
- Ad5-yCD/mutTKSR39rep-ADP (adenovirus): head and neck cancer

Oncolytic Virotherapy

Mathematical Modelling

- Wu, Byrne, Kim, Wein 2001
- Wodarz 2003, Dingli 2006
- Friedman, Tian et al, 2006, 2011, 2013, 2017, 2019

Eftimie 2011, 2016, 2019
Storey, Jackson, 2020, 2021
include immune Response

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

- Pooladvand, Kim, Jenner, et al 2018, 2019, 2021

Outline

1. AA. Baabdulla, TH, **Oscillations in a Spatial Oncolytic Virus Model.** Bulletin of Mathematical Biology, 2024, 86(8).

- AA. Baabdulla, F. Cristi, M. Shmulevitz, TH, Mathematical Modelling of <u>Reoviruses in Cancer Cell Cultures</u>, in revision, 2024. bioRxiv 2024.07.12.603333
- M. van Walsum, N. Mohammadnejad, TH, Mathematical Modelling of Oncolytic Virotherapy, 2024, manuscript.

4. TH. The Eye of the Needle in Oncolytic Virotherapy, Math Oncology Blog, 2024.

Base model

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Qualitative Behavior

$$\dot{C} = C (1 - C - I) - CV,$$

$$\dot{I} = CV - \underline{a}I,$$

$$\dot{V} = \underline{\theta}I - \underline{\gamma}V - \underline{\kappa}CV.$$
(2)

Qualitative Behavior

Nondimensionalization

$$\dot{C} = C (1 - C - I) - CV,$$

$$\dot{I} = CV - aI,$$

$$\dot{V} = \theta I - \gamma V - \kappa CV.$$
(2)

*ロ * * @ * * ミ * ミ * ・ ミ * の < や

A Bifurcation diagram with burst size $\theta = \frac{\alpha\beta bL}{\tau^2}$ as bifurcation parameter:

Qualitative Behavior

Nondimensionalization

$$\dot{C} = C (1 - C - I) - CV,$$

$$\dot{I} = CV - aI,$$

$$\dot{V} = \theta I - \gamma V - \kappa CV.$$
(2)

A Bifurcation diagram with burst size $\theta = \frac{\alpha\beta bL}{\tau^2}$ as bifurcation parameter:

Simulations of ODE model

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Using Pooladvand et al. parameters for adenovirus: base value: $\Theta = 58.33$, Hopf bifurcation $\Theta_H = 338.45$.

Simulations of ODE model

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Tumor Control Probability (TCP)

$$\begin{aligned} & \text{Poissonian:} \quad TCP(t) = e^{-C_0 S(t)}, \quad S(t) = \text{surviving fraction} \\ & \text{initial Cond.} \end{aligned}$$

(3)

Tumor Control Probability (TCP)

$$TCP(t) = e^{-C_0 S(t)}, \qquad S(t) =$$
surviving fraction (3)

▲□▶▲□▶▲≡▶▲≡▶ ≡ の९0

ß

$$\frac{\partial C}{\partial t} = D_{c}\Delta C + C(1 - C - I) - CV,$$

$$\frac{\partial I}{\partial t} = D_{i}\Delta I + CV - aI,$$

$$\frac{\partial V}{\partial t} = \Delta V + \theta I - \gamma V,$$

$$COu pled \text{ of illators}$$

$$Cou pled \text{ of illators}$$

・ロト・西ト・ヨト・ヨー うへつ

Simulations in 1-D

▲ロト▲舂と▲差と▲差と、差、のなぐ

Five inoculations

One inoculation in 2-D

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 - のへで

Longer time simulations

E

AA. Baabdulla, TH, **Oscillations in a Spatial Oncolytic Virus Model.** Bulletin of Mathematical Biology, 2024, 86(8).

• AA. Baabdulla, F. Cristi, M. Shmulevitz TH, Mathematical Modelling of Reoviruses in Cancer Cell Cultures, in revision, 2024.

Shmulevitz Lab

• Dr. Maya Shmulevitz and Fran Cristi, Li Ka Shing Institute of Virology, U Alberta

▲口 → ▲御 → ▲ 臣 → ▲ 臣 → 二 臣 …

• Reovirus is a nonpathogenic double-stranded DNA virus

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

- Reovirus is a nonpathogenic double-stranded DNA virus
- The wild type <u>T3wt</u> resides in the digestive tract of mammals

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● □ ● ● ●

- Reovirus is a nonpathogenic double-stranded DNA virus
- The wild type T3wt resides in the digestive tract of mammals
- It has shown anti-tumor abilities and is now in over <u>30</u> clinical trials targeting metastatic breast cancer, prostate cancer, colorectal cancer, etc.

- Reovirus is a nonpathogenic double-stranded DNA virus
- The wild type T3wt resides in the digestive tract of mammals
- It has shown anti-tumor abilities and is now in over 30 clinical trials targeting metastatic breast cancer, prostate cancer, colorectal cancer, etc.
- There are currently two phase III clinical trials on reovirus for breast cancer.

• In preliminary evaluations of the trials only 21% of patients respond to the treatment.

- In preliminary evaluations of the trials only 21% of patients respond to the treatment.
- How can we enhance the oncolytic activity of reovirus?

- In preliminary evaluations of the trials only 21% of patients respond to the treatment.
- How can we enhance the oncolytic activity of reovirus?
- Shmulevitz lab: Systematically developed mutations of reovirus to increase the oncolytic potential.

They found SV5 (supervisrus 5), which has 5 mutations, to producing larger plaques thant T3wt.

The binding rate of SV5 is lower than T3wt, leading to a contradictions to common belief.

- In preliminary evaluations of the trials only 21% of patients respond to the treatment.
- How can we enhance the oncolytic activity of reovirus?
- Shmulevitz lab: Systematically developed mutations of reovirus to increase the oncolytic potential.

They found SV5 (supervisrus 5), which has 5 mutations, to producing larger plaques thant T3wt.

The binding rate of SV5 is lower than T3wt, leading to a contradictions to common belief.

Question: Is there an optimal binding rate?

Model 1: Short time < 16hrs

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

$$V_t = D_V V_{xx} - \gamma_b V$$

- D_V diffusion coefficient
- γ_b binding rate

Model 1: Short time

$$V_t = D_V V_{xx} - \gamma_b V$$

• γ_b binding rate

Virus was inoculated for 1 hour and then washed out from the cells. Bound virus was measured. We estimated

$$\gamma_{b,T3wt} = 61.63 \pm 10.14$$
 per hour, $\gamma_{b,SV5} = 24.18 \pm 5.75$ per hour

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Diffusion coefficient

Diffusion coefficient

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへ⊙

Estimate the spread radius in short times

The equation

has an explicit solution.

Estimate the spread radius in short times

The equation

has an explicit solution. We assume that the spread radius corresponds to the level where the virus concentration is lower than V_{min} , and we compute

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Three new parameters:

- ν : percentage of virus binding that leads to an infection
- a: death rate of infected cells
- θ : burst size

Model 2: Long time

$$I_t = \gamma_b \nu V - aI$$

$$V_t = D_V V_{xx} + \theta I - \gamma_b V$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Three new parameters:

- ν : percentage of virus binding that leads to an infection
- a: death rate of infected cells
- θ : burst size

Marcato, Shmulevitz, Mol. Therapy 2007: $\nu = 0.01$.

Death rate and burst size

Burst size estimation

Travelling Wave Analysis

Lets do some Math:

Traveling Wave Analysis

$$I_t = \gamma_b \nu V - aI$$

$$V_t = D_V V_{xx} + \theta I - \gamma_b V$$

Traveling Wave Analysis

$$I_t = \gamma_b \nu V - aI$$

$$V_t = D_V V_{xx} + \theta I - \gamma_b V$$

Look for traveling wave solutions

$$(I(x,t),V(x,t)) = (\varepsilon_i e^{-\lambda(x-ct)}, \varepsilon_v e^{-\lambda(x-ct)})$$
d

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- c invasion speed
- λ decay rate of the wave front
- $\varepsilon_i, \varepsilon_v$ small parameters

Traveling waves

4日 > 4日 > 4日 > 4日 > 4日 > 4日 > 900

Validation

・ロト・「「「・」」・「「・」」・(「」・

So What?

・ロト・日本・日本・日本・日本・日本

So What?

Question: Is there an optimal binding rate?

So What?

Question: Is there an optimal binding rate?

Varying burst size θ

	\leq		/		
(θ	$\gamma_{\rm bmax}$	$\frac{\gamma_{\text{bmax}}}{\theta}$	C [*] _{max}	Plaque Size
	virus per cell	per hour	10^{-5}	mm per hour	mm ²
	500	0.28	56	0.047	5
	550	0.32	58	0.050	20
	600	0.36	60	0.053	32
	650	0.36	55	0.056	43
2102-	700	0.39	56	0.058	55
77-	750	0.43	57	0.060	69
	800	0.47	59	0.063	82
	850	0.47	55	0.065	95
	900	0.51	57	0.067	106
	950	0.51	54	0.069	121
	1000	0.50	50	0.071	129

Varying burst size θ

θ	γ_{bmax}	$\frac{\gamma_{bmax}}{\theta}$	C_{\max}^*	Plaque Size
virus per cell	per hour	10^{-5}	mm per hour	mm ²
500	0.28	56	0.047	5
550	0.32	58	0.050	20
600	0.36	60	0.053	32
650	0.36	55	0.056	43
700	0.39	56	0.058	55
750	0.43	57	0.060	69
800	0.47	59	0.063	82
850	0.47	55	0.065	95
900	0.51	57	0.067	106
950	0.51	54	0.069	121
1000	0.50	50	0.071	129

The Shmulevitz lab is now looking for the optimal virus.

(3) Including Immune Response, a theoretical study

 M. van Walsum, N. Mohammadnejad, TH, Mathematical Modelling of Oncolytic Virotherapy, 2024, manuscript.

OVT Models

We can incorporate the immune system into the model using cell and virus specific lymphocytes L_x and L_y .

$$\frac{dx}{dt} = rx\left(1 - \frac{x+y}{K}\right) - avx - pxL_x$$

$$\frac{dy}{dt} = avx - \delta y - qyL_v - pyL_x$$

$$\frac{dv}{dt} = \theta \delta y - cv - psL_v$$

$$\frac{dL_x}{dt} = gxL_x - wL_x \qquad Cell \text{ Specific}$$

$$\frac{dL_v}{dt} = hyL_v - wL_v \qquad \text{Virus specific}$$

 L_x : the population of tumor-specific leukocytes

 L_v : the population of virus-specific leukocytes

2-OVT Model

Figure: Treatment simulations of oncolytic virotherapy when the immune system is considered

シック 正 エヨマエリ・エーマ

Combination Therapies Models

We combine OVT with these following therapies:

- 1. Continuous infusion chemotherapy
- 2. Fractionated chemotherapy
- 3. Brachytherapy (insertion of radioactive seeds)
- 4. External beam radiotherapy (fractionated)
- 5. Immunosuppression with an immunosuppressant
- 6. Immune boost (stimulate lymphocytes and increasing their efficiency)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

7. CAR-T cell immunotherapy

(1) Continuous infusion chemotherapy

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

$$\dot{x} = rx(1 - x - y) - axy - pxL_x - x\theta_x(1 - E_x(C))$$

$$\dot{y} = axv - y - qyL_v - y - pyL_x - y\theta_y(1 - E_y(C))$$

$$\dot{v} = \theta y - cv - svL_v$$

$$\dot{L}_x = gxL_x - \omega L_x - L_x\theta_l(1 - E_l(C))$$

$$\dot{L}_v = hyL_v - \omega L_v - L_v\theta_l(1 - E_l(C))$$

$$\dot{C} = 1 - \gamma C$$
where $E_i(C) = e^{-\mu_i C}$ for $i \in \{x, y, l\}$

(2)-Fractionated chemotherapy

$$\dot{x} = rx(1 - x - y) - axy - pxL_x - x\theta_x(1 - E_x)$$

$$\dot{y} = axv - y - qyL_v - y - pyL_x - y\theta_y(1 - E_y)$$

$$\dot{v} = \theta y - cv - svL_v$$

$$\dot{L}_x = gxL_x - \omega L_x - L_x\theta_l(1 - E_l)$$

$$\dot{L}_v = hyL_v - \omega L_v - L_v\theta_l(1 - E_l)$$

$$\dot{C} = D(t) - \gamma C$$
(5)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Where $E_i(C) = e^{-\mu_i C}$ for $i \in \{x, y, l\}$

$$\dot{x} = rx(1 - x - y) - axy - pxL_x - mxR$$

$$\dot{y} = axv - y - qyL_v - pyL_x - myR$$

$$\dot{v} = \theta y - cv - svL_v$$

$$\dot{L}_x = gxL_x - \omega L_x - nL_xR$$

$$\dot{L}_v = hyL_v - \omega L_v - nL_vR$$

$$\dot{R} = \lambda(1 - R)$$

シック 単 エル・ボット 中国・エロッ

(4)- External beam radiotherapy

$$\frac{dx}{dt} = rx\left(1 - \frac{x+y}{K}\right) - avx - pxL_x$$
$$\frac{dy}{dt} = avx - y - qyL_v - pyL_x$$
$$\frac{dv}{dt} = \theta y - cv - psL_v$$
$$\frac{dL_x}{dt} = gxL_x - wL_x$$
$$\frac{dL_x}{dt} = hyL_x - wL_v$$

Assume only a surviving fraction of tumor cells and leukocytes after each treatment period where

$$S(d) = exp\{-\alpha d - \beta d^2\}$$

 α_i : radiosensitivity of cells to a single does of radiation, β_i :the radiosensitivity of cells to two doses of radiation

(5)-Immunosuppression

$$\dot{x} = rx(1 - x - y) - axv - pxL_{x}$$

$$\dot{y} = axv - y - qyL_{v} - pyL_{x}$$

$$\dot{v} = \theta y - cv - svL_{v}$$

$$\dot{L}_{x} = gxL_{x} - \omega L_{x} - \frac{L_{x}\vartheta(1 - e^{-\varepsilon l_{0}I})}{L_{v}}$$

$$\dot{L}_{v} = hyL_{v} - \omega L_{v} - \frac{L_{v}\vartheta(1 - e^{-\varepsilon l_{0}I})}{L_{v}\vartheta(1 - e^{-\varepsilon l_{0}I})}$$

$$\dot{I} = 1 - \eta I$$
(6)

うしつ 川 ふかく 山 きょう うんし

(6)-Immune boost

$$\dot{x} = rx(1 - x - y) - axv - \kappa pxL_{x}$$

$$\dot{y} = axv - y - qyL_{v} - pyL_{x}$$

$$\dot{v} = \theta y - cv - svL_{v}$$

$$\dot{L}_{x} = \zeta gxL_{x} - \omega L_{x}$$

$$\dot{L}_{v} = hyL_{v} - \omega L_{v}$$
(7)

くりょう 山田 ふかん 山下 ふうくしゃ

(7)-CAR-T cell immunotherapy

$$\dot{x} = rx(1 - x - y) - axy - pxL_{x}$$

$$\dot{y} = axv - y - qyL_{v} - pyL_{x}$$

$$\dot{v} = \theta y - cv - svL_{v}$$

$$\dot{L}_{x} = gxL_{x} - \omega L_{x} + \varphi$$

$$\dot{L}_{v} = hyL_{v} - \omega L_{v}$$
(8)

シック 単三 ・ 曲 ・ 由 ・ 自 ・ シック

Tumor control probability

Probability that cancer will be effectively controlled Poissonian model:

 $TCP(\tau) = exp\{-N_0S(\tau)\} \qquad close \quad to \quad 1 \quad ?$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

traditionally used as a means of predicting the success of radiotherapy We define the surviving fraction of cells at any time τ to be

$$S(\tau) = x(\tau) + y(\tau).$$

・ロト・「「「・」」・「「・」」・(「」・

 $\theta < \theta_H$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◆○◆

 $\theta > \theta_H$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

OVT insufficient, $\theta < \theta_H$

Treatment	OVT alone	alt. alone	combined	
1) continuous infusion chemo	×	4	<u>~</u>	<
2) fractionated chemo	×	×	×	
3) brachy	×	<u>×</u>	<u>×</u>	
4) external beam	×	×	×	
5) immuno suppression	×	×	×	
6) immuno boost	×	×	×	
7) CAR-T	×	٧	<u>~</u>	

OVT sufficient, $\theta > \theta_H$

	V		V
Treatment	OVT alone	alt. alone	combined
1) continuous infusion chemo	0.5	•	✓ ++
2) fractionated chemo	0.5	×	v
3) brachy	0.5	 Image: A start of the start of	✓ ++
4) external beam	0.5	 Image: A set of the set of the	 Image: A start of the start of
5) immuno suppression	0.5	×	•
6) immuno boost	0.5	×	1
7) CAR-T	0.5	 Image: A start of the start of	✓ ++

• When OVT is not successful on it's own, other treatments do not improve OVT or gain benefit from combination with OVT.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• When OVT is partially successful, benefit can be gained from combination treatments.

Conclusions and Future Work

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Conclusions and Future Work

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• with Tejas Bansod: analyse the underlying bifurcation structure.

Conclusions and Future Work

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.
- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Reovirus
 - We found conditions for optimal binding rates and burst sizes.
 - The results explained the experiments and they suggest new experiments.

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

- Reovirus
 - We found conditions for optimal binding rates and burst sizes.
 - The results explained the experiments and they suggest new experiments.
 - Mohammadnejad: do similar analysis for reo-virus and liver cancer.

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.
- Reovirus
 - We found conditions for optimal binding rates and burst sizes.
 - The results explained the experiments and they suggest new experiments.
 - Mohammadnejad: do similar analysis for reo-virus and liver cancer.
- Combination therapies
 - If Oncolytic virotherapy alone is not successful, it doesn't seem to be improved with combination therapies.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ◆ ○ ◆

• A more careful parametrization is needed.

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.
- Reovirus
 - We found conditions for optimal binding rates and burst sizes.
 - The results explained the experiments and they suggest new experiments.
 - Mohammadnejad: do similar analysis for reo-virus and liver cancer.
- Combination therapies
 - If Oncolytic virotherapy alone is not successful, it doesn't seem to be improved with combination therapies.
 - A more careful parametrization is needed.
 - Mohammadnejad: combination with Hepatitis- induced liver cancer.

- Spatial models
 - The basic oncolytic virus model shows interesting spatio-temporal dynamics.
 - with Tejas Bansod: analyse the underlying bifurcation structure.
 - with Negar Mohammadnejad: consider changes in pattern dynamics if immune response is included.
- Reovirus
 - We found conditions for optimal binding rates and burst sizes.
 - The results explained the experiments and they suggest new experiments.
 - Mohammadnejad: do similar analysis for reo-virus and liver cancer.
- Combination therapies
 - If Oncolytic virotherapy alone is not successful, it doesn't seem to be improved with combination therapies.
 - A more careful parametrization is needed.
 - Mohammadnejad: combination with Hepatitis- induced liver cancer.
 - Van Walsum, Day: Oncolytic virus resistance.

Thank You

1. AA. Baabdulla, TH, **Oscillations in a Spatial Oncolytic Virus Model.** Bulletin of Mathematical Biology, 2024, 86(8).

- AA. Baabdulla, F. Cristi, M. Shmulevitz, TH, Mathematical Modelling of Reoviruses in Cancer Cell Cultures, in revision, 2024. bioRxiv 2024.07.12.603333
- M. van Walsum, N. Mohammadnejad, TH, Mathematical Modelling of Oncolytic Virotherapy, 2024, manuscript.

4. TH. The Eye of the Needle in Oncolytic Virotherapy, Math Oncology Blog, 2024.