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Motivation: new insights from experimental economics

Finance (and economics in general) - unlike natural science - is not
well-suited to perform experiments like in laboratories on financial
(economic) systems.

The reason is that financial/economic costs of such experiments could
be too costly for societies.
As a result, most finance economists work with abstract/mathematical
models to perform experiments on such math models.
However, although macroeconomic experiments on the whole economy
is prohibitive, microeconomic experiments have their track record.
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Motivation: Chamberlin’s (1948) experiments of markets

Chamberlin (1948) conducted one of first experiments in
finance/economics:

By splitting his economics students (46 trials) into roughly equal-sized
groups of: sellers (S) and buyers (B).
Each seller i has one unit of good to sell at at minimum price of Si ,
i.e. individual cost, e.g. a student receives a card S-18, meaning it’s a
seller role with Si = 18.
Analogously, each buyer j wants to buy one unit of good at the
maximum price of Bj , called: willingness-to-pay (WTP), reservation
price, redemption value, e.g. a student receives a card B-104, meaning
it’s a buyer role with Bj = 104
Students interacted with each other to make a profitable transaction,
i.e. negotiated such a transaction price pij between seller i and buyer j
that Si ≤ pij ≤ Bj , so nobody is losing and transaction is value-added.
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Definition of demand, supply, equilibrium price and volume

Perfect Competition model pre-
dicts equilibrium price and volume
of transactions at the intersection
of demand and supply curves:

Demand function is
constructed as a decreasing
sequence of Bj

Supply function is
constructed as an increasing
sequence of Si
Given all Bj and Si a market
organizer can calculate and
set an equilibrium price
(56-58) and volume (15)
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Results of Chamberlin’s (1948) experiments of markets

Objective of Chamberlin (1948) experiments:
Assessing the prediction accuracy of perfect
competition model, i.e. if actual number of
translation and prices is well predicted by a
competitive model.

Results of Chamberlin (1948) experiments:
Students "traded too much", i.e. the actual
volume (avg. 19) was higher than the
equilibrium amount (15) 42 times out of 46
trials and the same 4 times. It was never
lower.
Also an actual price (avg. 52.6) diverged
from equilibrium price (56− 58)
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Introducing the Social Welfare function...

Is "trading too much" a real problem? More transactions sound
like a good thing. Not necessarily for economists...
...since economists are more interested in social welfare, rather than
quantity per se:

Definition of social welfare (SW)
Social welfare is a total value-added created from all trades, i.e.
SW =

∑
{(i ,j):traded} Bj − Si

Definition of market efficiency
Efficiency of market is the fraction (between 0% and 100%) of social
welfare achieved by this market out of maximum social welfare:

Eff =
SW

max(i ,j)SW
(1)
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Research problem

Given two motivating observations demonstrated in the literature:
varied degree of market efficiency dependent on market designs,
e.g. perfect competition, Chamberlin (1948) Haggling,
Market-clearing prices by Demange (1986), Double Auction in Smith
(1962,64) and Gode&Sunder (1993)
most of social interactions – including trading – happen between a
limited group of friends or acquainted traders, see Jackson (2008),
Easley & Kleinberg (2012), Newman (2018),

...we have put traders in a social (bipartite) network in order to investigate
the interaction between two drivers of market efficiency:

market design, i.e. Chamberlin’s higgling market, greedy matching,
Hungarian algorithm, perfect competition.
social network characteristics, i.e. network density and size.
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Zero-Intelligence Trading market design definition

We define the Zero-Intelligence Trading1 (ZIT) market design as a
following simulation process described by Chamberlin in 1933:

1 Pick uniformly a random pair of cards for seller i ∈ S and buyer j ∈ B

2 The pair (i , j) trades, if Si ≤ Bj

3 Iterate the process by picking uniformly a random pair of a seller and a
buyer, who haven’t yet traded, until no further trade is possible, i.e.
mini (Si ) > maxj(Bj)

For non-complete graphs, i.e. (B ∪ S ,Ep) with p < 1, we pick uniformly
random pairs that belong from edge set, i.e. (i , j) ∈ Ep.

1The name of Zero-Intelligence Traders was coined first in Gode & Sunder (1993)
applied to Double Auction market design which is not considered here.
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Greedy matching market design definition

ZIT will be bench-marked against Greedy matching, which is a following
deterministic and sub-optimal process of matching sellers with buyers:

1 Initiate the set of trades T to ∅,
2 for each edge (i∗, j∗) ∈ Ep calculate the value

SW ({(i∗, j∗)}) = Bj∗ − Sj∗ ,
3 sort the pairs (i∗, j∗) of sellers and buyers with respect to

SW ({(i∗, j∗)}), in a non-increasing order,
4 iterate over sorted pairs (i∗, j∗):

1 if neither of them has traded, i.e. i∗ ∈ {i : ∀j(i , j) /∈ T} and
j∗ ∈ {j : ∀i (i , j) /∈ T} as well as Si ≤ Bj then make the pair (i∗, j∗)
trade and update the set: T ← T ∪ {(i∗, j∗)}

until no further trade is possible, i.e. Si∗ > Bj∗ .
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Simulation experiment setup

Simulation loops:
for sim ∈ {1, ..., 1000} do

for n ∈ {10, 100, 1000}, p ∈ {0.001, 0.01, 0.01, 1} do
Generate Random Bipartite Graph G = (B ∪ S ,Ep)
for marketDesign ∈ {Zero − IntelligenceTrading , greedy} do

Run Trading process according to marketDesign on graph G
Calculate market efficiency (Eff ) and trade participation

Where:
sim - simulation iterator,
n - number of sellers/buyers, network size is 2× n,
p - probability of an edge, hence degree is n × p,
Ep - set of edges between sellers and buyers, which is constructed in a
way that for each pair of nodes (i , j) ∈ S × B = {1, .., n} × {1, .., n},
we independently introduce an edge (i , j) in Ep with probability p.

Mateusz Zawisza (TMU, SGH) Market Design on Networks CoNBaF 2024 11 / 22



Simulation experiment setup

Simulation loops:
for sim ∈ {1, ..., 1000} do

for n ∈ {10, 100, 1000}, p ∈ {0.001, 0.01, 0.01, 1} do
Generate Random Bipartite Graph G = (B ∪ S ,Ep)
for marketDesign ∈ {Zero − IntelligenceTrading , greedy} do

Run Trading process according to marketDesign on graph G
Calculate market efficiency (Eff ) and trade participation

Where:
sim - simulation iterator,
n - number of sellers/buyers, network size is 2× n,
p - probability of an edge, hence degree is n × p,
Ep - set of edges between sellers and buyers, which is constructed in a
way that for each pair of nodes (i , j) ∈ S × B = {1, .., n} × {1, .., n},
we independently introduce an edge (i , j) in Ep with probability p.

Mateusz Zawisza (TMU, SGH) Market Design on Networks CoNBaF 2024 11 / 22



Simulation experiment setup

Simulation loops:
for sim ∈ {1, ..., 1000} do

for n ∈ {10, 100, 1000}, p ∈ {0.001, 0.01, 0.01, 1} do
Generate Random Bipartite Graph G = (B ∪ S ,Ep)
for marketDesign ∈ {Zero − IntelligenceTrading , greedy} do

Run Trading process according to marketDesign on graph G
Calculate market efficiency (Eff ) and trade participation

Where:
sim - simulation iterator,
n - number of sellers/buyers, network size is 2× n,
p - probability of an edge, hence degree is n × p,
Ep - set of edges between sellers and buyers, which is constructed in a
way that for each pair of nodes (i , j) ∈ S × B = {1, .., n} × {1, .., n},
we independently introduce an edge (i , j) in Ep with probability p.

Mateusz Zawisza (TMU, SGH) Market Design on Networks CoNBaF 2024 11 / 22



Numerical results for ZIT on complete graphs, i.e. p = 1

We conducted simulation experiments of ZIT as well as employed
differential equitation to demonstrate the following results on complete
graphs, i.e. p = 1:

Numerical results for a model specification of: Si ,Bj ∼ iid U(0, 1)

Eff ZIT ≈ 73%, i.e. ≈ 27% value-destroyed
≈ 71% (instead of 50%) of traders do trade. Among them:

50 p.p. are intramarginal traders, i.e.: ({i : Si ≤ 1
2}, {j : Bi ≥ 1

2})
remaining ≈ 21% p.p. are extramarginal traders, i.e. sellers
{i : Si > 1

2} and buyers {j : Bj <
1
2} - too much trade
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Simulated market efficiency for non-complete graphs p ≤ 1
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Simulated Participation rate for non-complete graphs p ≤ 1
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Conclusions

Simulations showed that:
For sparse graphs of degree lower than 1, i.e. n × p ≤ 1, both
market design are comparable its efficiency is ca. 40%-45% and
converges to 0% as graph gets sparse.
Greedy matching outperforms ZIT significantly for non-sparse
(n × p ≥ 1) graphs and converges to 100% as graph gets denser.
Market efficiency can be significantly improved for both market
designs by increasing the average degree (n × p) from 1 to 5 or
10, enabling greedy matching to improve from ca. 45% to 89% and
95%, respectively. Practical take-away:

It’s enough to have at least 5 friends to achieve ca. 90% of
maximum efficiency of either market design.

Contrary to popular belief, market size had no significant impact.
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Thank you for your attention!

Feel free to drop me an e-mail:
mzawisz@sgh.waw.pl
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APPENDIX
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Unpublished asymptotic results of further research (1/4)

Definition (Hungarian Algorithm Market Efficiency on G(n, n, p))
Let H(p) be the market efficiency of Hungarian Algorithm on a random
bipartite graph G(n, n, p) with vertex bi-partition V = (S ,B), S = [n],
B = [n], in which each of the n2 possible edges appears independently with
probability p.

Theorem (On the market efficiency of Hungarian Algorithm)

Let c = c(n) be any function of n, and let p = 2(log n+c)
n . Consider the

process ran on G(n, n, p). Then,

P
(
H(p) = H(1)

)
→


0 if c → −∞
e−e−ĉ

if c → ĉ ∈ R
1 if c →∞.

Hungarian Algo efficiency does not change unless the graph is very sparse.
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Unpublished asymptotic results of further research (2/4)

Let G (p) denote the market efficiency generated by greedy matching.
Trivially, G (p) ≤ H(p). Following theorem shows that a.a.s. the greedy
algorithm ran on G(n, n, p) is asymptotically as good as the optimal
Hungarian Algorithm ran on the complete bipartite graph, provided that
the expected degree tends to infinity, that is, np →∞ as n→∞.

Theorem (On the market efficiency of Greedy Matching)
Let ω = ω(n) = O(log n) be any function of n that tends to infinity
(sufficiently slowly) as n→∞. Let

ω̂ = ω̂(n) =
ω

3 logω
= O

(
log n

log log n

)
and p = p(n) =

ω

n
.

Consider the process ran on G(n, n, p). Then, a.a.s.

G (p) ≥ n

4
+O

( n

ω̂

)
∼ n

4
∼ H(1).
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Unpublished analytical results of further research (3/4)

Definition (Full greedy matching)
Let the full greedy matching process be equivalent to greedy matching as
defined before on slide page 12.

Definition (Sequential greedy matching)
Let the sequential greedy matching be the sequential random selection
of an active side followed by greedy selection of its member and
greedy selection of this member neighbour.

Theorem (On the equivalence of full and sequential greedy matching)
Both full and sequential greedy matching processes produce the same
list of trades.
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Further unpublished simulation results (4/4)

The market efficiency ratio of both ZIT/random and greedy matching
to Hungarian Algorithm is U-shaped wrt the average degree,
Conditional positive impact of the imbalance btw demand& supply:

The imbalance between demand & supply measured as the deviance of
probability of choosing a buyer as an active side from 50%, i.e.
|buyerPr − 50%|, doesn’t impact the efficiency, if there’s only one
auctioneer and an inactive player is chosen in a random manner,
The imbalance between demand & supply, as defined above, has a
positive impact on market efficiency, if the active player is
chosen in a greedy manner or there’s at least 2 auctioneers.

Highly conditional impact of single search:
The impact of single search is positive for at least 2 auctioneers
and is decreasing with the number of auctioneer
For 1 auctioneer the impact of single search is:

negative for average degree higher than or equal to ≈ 10, i.e.
ns × p = nb × p ≥≈ 10
positive for average degree lower than or equal to ≈ 3, i.e.
ns × p = nb × p ≤≈ 3
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Differential equation approach
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