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Introduction

Direct Relations Among Financial Institutions
Example: Weighted Directed Networks of Inter-Bank Loans

Banks establish mutual credit relation with different maturity and/or collateral in
order to fund themselves or to use excess liquidity

Interbank markets allow banks to cope with specific liquidity shocks

The interbank market is one of the important channels of propagation of shocks
and systemic risk

↔

Banks



1010AC . . . .

. . . . .

. . Ynk . .

. . . . .

. . . . 107AC



B
an
ks

Picture from Giraitis et. al. 2016
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Introduction

The interbank market: stylized facts

Very low connectivity: only ∼ 1% of links are present
Power law tailed distribution of in- and out- degree. Estimated exponent
α ' 2÷ 3
The distribution of interbank exposures (node strenght) is also heavy-tailed.
Low average distance between nodes,
A disassortative mixing, i.e. the tendency of high degree nodes to connect
with low degree nodes,
Small clustering
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Introduction

e-MID: Electronic Market for Inter-Bank Deposits
Data Description

Inter-bank Over-Night Loans

132 banks, 297 weekly networks between 2009 and 2015
Sparse networks, density ≤ 0.08
The network might be affected by shocks that hits a subset of nodes
Example: Lehman default, LTRO, etc
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Introduction Graph/Network Data Description

Graph/Networks Notation

Binary Graph

Pair (V , E)
V set of N nodes
E set of pairs of nodes: M links

Adjacency Matrix:

Aij =

{
1 if (i , j) ∈ E
0 otherwise

Can be directed, or undirected

Weighted

Weighted Adjacency Matrix Yij ∈ R (for us only R+)
Aij = 1Yij>0, indicator function 1
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Introduction Graph/Network Data Description

Probabilistic models of networks

A network probabilistic model is defined by a set X of graphs and a
probability mass function

Pθ [A] : X → [0, 1] ,

indexed by a vector of model parameters θ and such that ∑A∈X Pθ (A) = 1.
For an arbitrary (regular enough) network function F : X → R defined on
the set X , the expected value of F on the ensemble X is defined as

EX [F ] = ∑
X∈X

F (A) Pθ [A] .

Probabilistic (or statistical) models of networks are useful for
Assessing the significance of observed network structures
Construct null models
Hypothesis testing
Identification of mechanisms of network formation
Reconstruct networks from partial information
Produce conditional scenario generations
....
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Introduction Graph/Network Data Description

Identifying core-periphery

The core is a subset of nodes that are maximally connected to other members of
the core, while the periphery is the complementary subset made of nodes with no
reciprocal connections, but only with the core.

A standard approach: consider a partition in two blocks C and an error matrix

E (C) =
(

ECC ECP
EPC EPP

)
=

(
Nc (Nc − 1)−∑i ,j∈C Aij 0

0 ∑i ,j 6∈C Aij

)

The optimal partition is given by

C∗ = argmin
C

ECC + EPP
M

This procedure always produces a core but does not say if it is significant!
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Introduction Graph/Network Data Description

What	is	the	two-block	large	scale	organiza4on	of	a	network	?	

MODULAR	

BIPARTITE	

CORE-PERIPHERY	

RANDOM	
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Introduction Graph/Network Data Description

Why	is	the	inference		a	complicated	problem?	
Adjacency	matrix	of	the	e-MID	interbank	market.	The	two	matrices	differ	only	for	the	
sor4ng	of	rows	and	columns.	Color	scale	of	links	is	propor?onal	to	nodes	degree.		
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Introduction Graph/Network Data Description

Stochastic block model

Generalizes Erdös-Renyi to many blocks.
Nodes are divided in m(= 2) groups. Node i belongs to group gi ∈ {1, ..,m}.
The probability that node i and j are linked is pgigj , independent from the
other links
The m×m matrix p is the affinity matrix
We consider here the directed and weighted SBM with weights Yij ∈N

P(Y |g , p) =
N

∏
(i ,j)

p
Yij
gigj

Yij !
exp (−pgigj ). (1)

Inference
Message passing (aka belief propagation) based on cavity method
Parameter inference by minimizing the microcanonical entropy via Markov
Chain Monte Carlo (Peixoto 2014)
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Introduction Graph/Network Data Description

Two block inference

Affinity matrix

p =

(
p11 p12
p12 p22

)
(2)

Depending on the ranking of the affinity matrix elements pij we have
If p11 > p22 > p12 (or p22 > p11 > p12) the network has a modular
structure,
If p11 > p12 > p22 (or p22 > p12 > p11) the network has a core-periphery
structure.
If p12 > p11 > p22 (or p12 > p22 > p11) the network has a bipartite
structure.
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Introduction Graph/Network Data Description

Application: the e-MID interbank market

Data: Italian electronic market for interbank deposits (e-MID). Overnight
transactions from July 2009 to December 2014.

Weighted Day Week Month
Year B C M R B C M R B C M R
2010 53 0 6 41 92 0 0 8 100 0 0 0
2011 55 0 5 40 90 0 0 10 100 0 0 0
2012 41 0 9 50 55 0 0 45 75 0 0 25
2013 39 0 5 56 36 0 2 62 58 0 0 42
2014 52 0 4 44 80 0 0 20 100 0 0 0

Table: Percentages of inferred structures in the e-MID interbank market at different
levels of aggregation in the 5 investigated years. The structures are bipartite (B),
core-periphery (C), modular (M), and no structure (R).

At all time scales the interbank market is bipartite (rather than
core-periphery as suggested in the literature)
In 2012-2013 the interbank has very often a random structure
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Introduction Statistical models of networks

Hidden node-specific parameter models

Models with hidden node-specific parameters are flexible network formation
mechanisms, able to generate a wide range of structural features.
Each node i is associated with a (vector of) parameter(s) θi ,
Links are formed between nodes with a probability

pij = f (θi , θj ) (3)

In Stochastic Block Model the θs are discrete variables identifying the group
(block) the node belong to.
In fitness model the θs are continuous variables associated with the degree
(Caldarelli et al 2002)
Mathematical connection to Lagrange multipliers of Maximum Entropy
ensemble with constraints on degrees (configuration model).
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Introduction Statistical models of networks

Maximum Entropy Network Ensembles

Consider the following Maximum Entropy problem for the probability P of having
a (static) network i

max
{P}

(
−∑

i

Pi lnPi

)
s.t. ∑

i

Pi = 1, ∑
i

Pi f
s
i = f̄ s

where f si (s = 1, ..,S) are certain network metrics of network i .

The solution is

Pj =
exp

(
∑s θs f

s
j

)
∑j exp

(
∑s θs f sj

)
The Lagrange multipliers θ1, ..., θS are determined (in principle) by imposing the
constraints ∑i Pi f

s
i = f̄ s .
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Introduction Statistical models of networks

Exponential Random Graph Models (ERGM)

Definition

Set of network metrics {fs (A)}Ss=1
Probability mass function (PMF)

P (A) =
e∑s θs fs (A)

K (θ)

For both directed and undirected binary networks

Examples of Metrics

Number of links f (A) = ∑i ,j Aij → Erdos-Renyi model
Degree sequence fi (A) = ∑j 6=j Aij → fitness, configuration, beta model.
Number of triangles

Exponential Random Graph models naturally emerges from Maximum Entropy
principle
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Introduction Statistical models of networks

Fitness Model for Binary Networks
A.K.A. Configuration Model or Beta Model

Choosing fi (A) = ∑j 6=j Aij it is possible to show that:

Definition
2N parameters for nodes’ heterogeneity:

←−
θ i in-fitness - tendency to form incoming connections−→
θ i out-fitness - tendency to form outgoing connections

P (Aij = 1) =
1

1+ e
−
(←−

θ i+
−→
θ j

)

ERGM with 2 statistics per node: in and out degree
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Introduction Statistical models of networks

The Likelihood of the Directed Fitness Model

Log-Likelihood

The Log-likelihood function of θ ≡
(←−

θ
−→
θ

)
:

l (θ) = logP (A|θ) = ∑
ij

{
Aij

(←−
θ i +

−→
θ j

)
− log

(
1+ e

←−
θ i+
−→
θ j

)}

Comments
MLE estimation
Large N single network asymptotic theory (valid in dense regime )
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Introduction Statistical models of networks

Temporal Networks in Discrete Time
Networks Evolve in Time

2010 2015
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Introduction Statistical models of networks

Temporal Networks in Discrete Time
Networks Evolve in Time

Discrete Time Description

{Y(t)}t=0,1,...,T

2010 2015

Fabrizio Lillo Non-stationarity and shock resilience



Introduction Statistical models of networks

Dynamical networks

Idea: The temporal networks is described by the dynamics of the latent variables
(fitness) θi → θ

(t)
i .

Different approaches:
Each θi evolves independently as an AR(1) model (Mazzarisi et al., EJOR
2020)

θ
(t)
i = a+ b θ

(t−1)
i + ε

(t)
i

The θs evolve as a VAR model (Rizzini and Lillo, 2024)

~θ
(t)

= ~µ +B~θ
(t−1)

+ ε(t)

allowing for interactions and leading to scenario generation (Impulse
Response Analysis)
Allow for generic dynamics of fitnesses (and networks) via Score Driven
models which must be filtered from the data (Di Gangi, Bormetti, Lillo,
2022).
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Introduction Statistical models of networks

What drives network dynamics?

Many networks are inherently dynamic as links are created and destroyed through
time.

Preferential relations between nodes tend to preserve past links
(If we were friends yesterday we will be friend today).
Node specific properties can drive the evolution of the network topology
(Two social persons are more likely to be friend).

How the node characteristic and link persistence shape a network and how to
account for the two linking mechanisms in a statistical model of temporal
networks?
A proper modeling of network dynamics allows performing short term link
prediction.
In general, the dynamics will be a combination of the two types of
mechanisms.
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Introduction Statistical models of networks

Modeling link persistence

We model the tendency of a link that does (or does not) exist at time t − 1
to continue existing (or not existing) at time t.
Discrete AutoRegressive DAR(1) model

P(At |At−1, α,χ) =

∏
i 6=j

αijδAt
ijA

t−1
ij︸ ︷︷ ︸

Copying the last observation
with probability αij

+ (1− αij )χ
At
ij

ij (1− χij )
1−At

ij︸ ︷︷ ︸
Bernoulli trial with probability 1− αij ;

The link probability is χij

One independent process per link.
The larger is αij , the more persistent is the link between i and j .
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Introduction Statistical models of networks

Dynamics of node specific variables

One latent (dynamic) parameter θti per i . Θt = {θti }i=1,..,N .
The probability of a link between two nodes depends on their latent
parameter through a link function.
The parameter θti evolves in time and has temporal persistence.
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Introduction Statistical models of networks

Temporal fitness

Each node i is characterized by a quantity θti , i.e. the node fitness. We
assume that it follows an AR(1) process,

θti = φ0,i + φ1,i θ
t−1
i + εti

φ0,i ∈ R, |φ1,i | < 1 and εti ∼ NID(0, σi ) with σi > 0.

We define the link probability at time t as:

P(At
ij = 1|θti , θtj ) =

1

1+ e−(θ
t
i +θtj )

The larger θti is, the larger is the probability for all links incident to node i at
time t (i.e. the in-degree).
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Introduction Statistical models of networks

Dynamic fitness + link persistence

We combine the hidden dynamics of (fitness) with the mechanism of copying
from the past (link persistence).
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Introduction Statistical models of networks

DAR-TGRG: fitness dynamics + link persistence

Mixture of the two linking mechanisms:(θti |θ
t−1
i ,Φi ) ∼ N (θti − φ0,i − φ1,i θ

t−1
i , σi ) ∀i = 1, ...,N

P(At |At−1,Θt , α) = ∏i ,j>i

(
αijδAt

ijA
t−1
ij

+ (1− αij )
e
Atij (θ

t
i +θtj )

1+e
(θti +θtj )

)

φ0,i ∈ R, |φ1,i | < 1, σi > 0 and αij ∈ [0, 1] ∀i , j = 1, ...,N.
Copying from the past with probability αij and a time evolving marginal
described by the dynamic fitness model with probability 1− αij .
αij disentangles the two mechanisms for each link.

3×N parameters Φ, (N2) parameters α.
Expectation-Maximization (EM) algorithm for model estimation since
likelihood is known.
The estimation of parameters via EM is unbiased, while the Single Snapshot
Inference is biased.
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e
Atij (θ

t
i +θtj )

1+e
(θti +θtj )

)

φ0,i ∈ R, |φ1,i | < 1, σi > 0 and αij ∈ [0, 1] ∀i , j = 1, ...,N.
Copying from the past with probability αij and a time evolving marginal
described by the dynamic fitness model with probability 1− αij .
αij disentangles the two mechanisms for each link.

3×N parameters Φ, (N2) parameters α.
Expectation-Maximization (EM) algorithm for model estimation since
likelihood is known.
The estimation of parameters via EM is unbiased, while the Single Snapshot
Inference is biased.
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Goodness of fit of the EM algorithm
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Figure: Left panels: distribution of relative errors in the estimation of αij , φ0,i , φ1,i and
σi . Right panel: latent dynamics for a generic θti compared with the inferred one
according to EM.

The estimation of parameters via EM is unbiased, while the Single
Snapshot Inference (SSI) is biased
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Out-of-sample link prediction for e-MID

threshold value for α
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
U

C

0.65

0.7

0.75

0.8

0.85

0.9

0.95

TGRG

DAR-TGRG

DAR(1)

We derive closed form expression for the p-step ahead forecast for the
presence of a link.
Out of sample analysis for the e-MID interbank market.
DAR-TGRG outperforms TGRG and DAR(1) network models in terms of
Area Under Curve (AUC).
On average, network topology is more important than link stability for link
prediction in e-MID.
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Shock propagation and resilience

Modeling shock propagation and resilience in directed
temporal networks

How does a networked system reacts to an exogenous shock and how does it
relax back to the normal state?
We study the resilience of a temporal network by proposing a modification of
the impulse response analysis
Rather than considering a shock on a network observable (e.g. a link
disappears), we study shocks on nodes’ characteristics
Idea:

the node i propensity to create link is contained in the hidden variable
(fitnesses) θi ;
propose a model for the evolution of the θs;
study how the θs evolve as a consequence of an idiosyncratic or systemic
shock on them.
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Shock propagation and resilience

Economic interpretations

In a dynamic fitness model calibrated on the unweighted interbank network
Mazzarisi et al (EJOR 2020) finds that exp(θi ) correlates closely with the in-
or out-strength (not used in the calibration): θi ∼ log(bank exposure)

In zero-inflated gravity models of the World Trade Web, the probability of a
link is

P(Aij = 1) =
GDPi · GDPj

1+ GDPi · GDPj

where GDPi is the (normalized) GDP of country i . Thus θi = logGDPi

A shock ∆ on θi corresponds to a log (or percentage) change of ∆ in bank
exposure or GDP.
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Shock propagation and resilience The model and IRF

The model for fitness dynamics

Vector ~θt evolves according to a vector autoregressive model of order 1
(VAR(1)):

~θt = ~µ +B~θt−1 +w t , (4)

~µ controls the mean value of the latent variables, thus the temporal average
degree of each node
B plays the role of modeling the lagged interactions between latent variables:

the diagonal elements of B describe the temporal autocorrelations of the θs
the off-diagonal elements describe how the latent variable of a node at time t
affects the latent variable of another node at time t + 1

w t ∼ N (0, σ2I ) is the vector of white noise terms.

Mazzarisi et al (EJOR 2020) considered a model with diagonal B (plus a
mechanism for adding memory to each link)
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Shock propagation and resilience The model and IRF

Impulse Response Function

We assume that an exogenous shock on the latent variables ~∆θ happens at
time τ

We define the (standard) impulse response function of the latent vector as

IRF θ(t; ~∆θ) = E[~θτ+t |~θτ + ~∆θ,~θτ−1...]−E[~θτ+t |~θτ,~θτ−1...] (5)

where the expectation is taken over the realization of the noise w t

The IRF of the latent variables is

IRF θ(t, ~∆θ) = Bt ~∆θ (6)

IRF θ(t, ~∆θ) is linear in ~∆θ

IRF θ(t, ~∆θ) does not depend on ~θτ,~θτ−1... but only on the shock vector ~∆θ
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Shock propagation and resilience The model and IRF

Network Impulse Response Function

However we are interested on the effect of the shock on the network, not on
the latent variables
The network is a complex object and the expected value of its adjacency
matrix might not be informative of the effect of the shock
We propose to define the impulse response function on a network metric
Pt = f (At) as

IRFP (t; ~∆θ) = E[Pt+τ |~θτ + ~∆θ,~θτ−1...]−E[Pt+τ |~θτ,~θτ−1...] (7)

In the fitness model, the properties of the observable network is a function of
the random vector ~θ
The Impulse Response Function on the network metric is a non-linear
function of the shock ~∆θ and depends on ~θ.
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Shock propagation and resilience The model and IRF

Network Impulse Response Function

Proposition

If ~θt follows a VAR(1) dynamics, the Impulse Response Function for the network
metric f (At) is

IRFP (t; ~∆θ) =
∫

E
[
f (At)|~θt

]
·

·
[
N
(
~θt ; µt +Bt−τ ~∆θ,Σt

)
−N

(
~θt ; µt ,Σt

)]
d~θt

where
µt = (I−B)−1(I−B)t~µ +Bt−τ~θτ

Σt = (I−B2)−1(I−B2)tΣ

are, respectively, the conditional mean and variance.

Notice that the expectation E
[
f (At)|~θt

]
refers to the static fitness model.
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Shock propagation and resilience The model and IRF

Network density with fitness model

As a specific case, we consider as network metric the density,

P = f (A) = δ = 2(∑Aij )/(n(n− 1))

At each time t, the expected network density is given by

E[δ|A] = 2
n(n− 1) ∑

i>j

∫ ∞

−∞

∫ ∞

−∞

1

1+ e−(θi+θj )
pθ(θi , θj )dθidθj ,

When each θi is Gaussian with mean m, variance s2 and correlation r , the
expected density of a network is

E[δ] = I (2m, 2s2(1+ r))

where
I (m, s2) :=

∫ ∞

−∞

1
1+ e−x

1
s
√
2π

e−
1
2 (

x−m
s )2dx .

is the logistic-normal integral.
For small noise s it is

E[δ] ≈ 1
1+ e−2m

+ (1+ ρ)
e2m(1− e2m)

(1+ e2m)3
s2 +O(s4)
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Shock propagation and resilience Mean field model

Mean field model

All nodes have the same unconditional mean ~µ = µ~1
Assume that matrix B has

diagonal elements equal to a
off-diagonal elements all equal to b

Var [~wt ] = σ2I
Alternatively, the elements of B are equal to 1 with probability p and zero
otherwise (sparse interaction).
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Shock propagation and resilience Mean field model

Mean field model: properties

The spectral radius of B is λ1 = a+ b(n− 1) and covariance stationarity of
the VAR model is guaranteed when |λ1| < 1

The stationary value of ~θ is

~θS =
µ

1− λ1
~1

For a generic B (not necessarily mean field or dense) it is

~θS = (I−B)−1~µ = µ(I−B)−1~1

i.e. the stationary value of the fitness of node i is its Katz centrality when
the dynamical matrix B, is seen as an adjacency matrix of a weighted
network. The stationary degree of a node (driven by θS ) is related to its Katz
centrality in the matrix B.
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Shock propagation and resilience Mean field model

Network Impulse Response Function

We consider a shock ∆ of a mean field model affecting only the first node
when all nodes have the same fitness θτ.
The Network Impulse Response Function is analytically computed as

IRF δ(t; ~∆θ) =
2
n
I (µ1,t + µj∈V ′,t , 2σ2t (1+ ρt))

+
n− 2
n

I (2µj∈V ′,t , 2σ2t (1+ ρt))

−I (2µt , 2σ2t (1+ ρt)).

where µ1,t , µj∈V ′,t , σt , and ρt are explicit functions of t, n, a, b (and p), σ,
θτ, and ∆.
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Shock propagation and resilience Mean field model

Dependence on shock size

Left. IRF at time t = 1 as a function of ∆ for sparse (red) and dense (blue)
graphs.
Right. IRF on a sparse network for ∆ = −20 (blue), ∆ = −10 (red) and, ∆ = 10
(green).
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Shock propagation and resilience Mean field model

Dependence on max eigenvalue

IRF on a sparse network for λ1 = 0.69 (red), λ1 = 0.79 (green), and λ1 = 0.89
(cyan)
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Shock propagation and resilience Mean field model

The max eigenvalue explains only part of the dynamics

IRF keeping λ1 = 0.79 fixed: strong interaction b (red), medium interaction b
(green) and weak small b (cyan).
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Shock propagation and resilience Mean field model

The role of noise

IRF on a sparse network with σ2 = 0.01 (red), σ2 = 0.1 (green), and σ2 = 0.5
(cyan).
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Shock propagation and resilience Estimation and empirical analysis

Econometric estimation procedure

The single snapshot MLE procedure (N-SSI) does not produce consistent
estimations for of sparse networks (see Chatterjee et al.2011)
We propose a new econometric approach to estimate the fitness dynamics
based on the Kalman Filter (KF-SSI).
The single snapshot estimated parameters ~Θt are described by the state
space model {

~̃θt = ~̃µ + B̂~̃θt−1 +w t ,

~Θt = I~̃θt + v t

(8)

where I is the identity matrix, v t ∼ N (0,Rt), B̂ collects the estimated
coefficients of matrix B in (4) and w t ∼ N (0,Qt)

θi ,t a b µ σ2

N-SSI 0.5757569 0.3755679 0.010707 0.3219423 0.3755679
KF-SSI 0.4043644 0.1048899 0.02555794 0.1380771 0.145144

Table: The mean absolute relative error of the estimated parameters .
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Shock propagation and resilience Estimation and empirical analysis

Empirical application

Financial network of electronic Market of Interbank Deposit (e-MID)
Weekly data of 8 banks in the period Jan-Oct to 2014
Left: Mix of positive (dark blue) and negative (light blue) interactions.
λ1 = 0.93.
Right: IRF of the density under a shock to a specific node at a specific date
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Non stationary temporal networks

Non stationary temporal networks

The network dynamics is sometimes non stationary and strongly affected by
external variables
Not only topology, but also weights change with time, and the model seen so
far are limited to binary networks
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Non stationary temporal networks

Score Driven Generalized Fitness Model
Modelling Choices

Contribution: Introduce a new class of weighted temporal networks model.

Key Elements

Fitness model for degrees heterogeneity

Zero augmentation to allow low density and modeling of weights

Score driven, latent parameters for temporal evolution
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Non stationary temporal networks

Zero augmentation for weights

Zero Augmented Fitness Model

P
(
Y

(t)
ij = w

)
=


e
−(
←−
θ i+
−→
θ j)

1+e
−(
←−
θ i+
−→
θ j)

for w = 0

1

1+e
−(
←−
θ i+
−→
θ j)

gij (w) for w > 0

Positive Support Distribution for the Weights

gij Gamma distribution s.t.

E [Yij |Yij > 0] = Ew∼gij [w ] = e

(←−
λ i+
−→
λ j

)

Can handle discrete weights
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Non stationary temporal networks Score driven models

Score Driven Models
Creal, Koopman and Lucas (2008), Harvey and Chakravarty (2008)

y (t) ∼ P
(
y (t)|f (t)

)
, y (t) possibly matrix valued

f (t) vector of K time varying parameters

f (t+1) = w + b f (t) + a I (t)
∂ logP

(
y (t)|f (t)

)
∂f

w , a, b static parameters, I (t) scaling matrix

Recipe for T.V. parameters: y (t) ∼ P
(
y (t)|f

)
→ y (t) ∼ P

(
y (t)|f (t)

)
MLE estimates

These are Observation-driven models: parameters evolve in time based on some
nonlinear function of past observations

Var[f (t+1)] > 0, Var[f (t+1)|Ft ] = 0
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Non stationary temporal networks Score driven models

Score Driven Gaussian Variance: GARCH
Generalized Auto-Regressive Conditional Heteroscedasticity

Consider yt = σε(t) where ε(t) ∼ N (0, 1) hence p(yt |σ2) = 1√
2πσ2 e

−y2
t /2σ2

σ2t+1 = w + bσ2t + aI (t) ∂ log p(yt |σ2)
∂σ2

∂ log p(yt |σ2)
∂σ2

=
∂

∂σ2

(
− log σ2

2
− y2t /2σ2

)
=

y2t − σ2

2σ4

I = 2σ4 → σ2t+1 = w + bσ2t + a(y2t − σ2t ) = w + a′y2t + b′σ2t

Many well known models can be obtained as SD (EGARCH, MEM, ACD ...)
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Non stationary temporal networks Score driven models

The GARCH (and SD models) as a filter of a misspecified
dynamics
Simulate 1000 observations from the model

rt = σtεt εt ∼ N (0, 1) σt = 2+ 0.5 sin
π t

100
and we use

σ2t = ω + αr2t−1 + βσ2t−1
to filter the values of σt .
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(Left) Artificially generated time series of returns.
(Right) Filtered (black) and real (red) values of σt .
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Non stationary temporal networks Score driven fitness model

Score Driven Generalized Fitness Model
Gamma Distributed Weights

Definition

P
(
Y

(t)
ij = w

)
=



e
−(←−θ (t)

i +
−→
θ
(t)
j )

1+e
−(←−θ (t)

i +
−→
θ
(t)
j +)

for w = 0

(
µ
(t)
ij

)−σ
Γ(σ)−1

1+e
−(←−θ (t)

i +
−→
θ
(t)
j )

w (σ−1)e
− w

µ
(t)
ij for w > 0 .

with µ
(t)
ij = σ−1e

(←−
λ

(t)
i +
−→
λ

(t)
j

)
Score Details

Maximum Likelihood Estimation
It can be seen as a filter of misspecified dynamics
Provides a real time estimation of latent parameters
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Non stationary temporal networks Score driven fitness model

Score Driven Generalized Fitness Model
Details: binary score

We let the fitness, both binary and weighted, evolve in time, following the
score-driven recursive update rule with score

∂ logP
(
Y(t)|f (t)

)
∂
←−
θ

(t)′
k

= ∑
j

A
(t)
kj −

1

1+ e−(
←−
θ
(t)
k +
−→
θ
(t)
j )



∂ logP
(
Y(t)|f (t)

)
∂
−→
θ

(t)′
k

= ∑
i

(
A
(t)
ik −

1

1+ e−(
←−
θ
(t)
i +
−→
θ
(t)
k )

)
(9)

and does not depend on the choice of g
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Non stationary temporal networks Score driven fitness model

SD-Fitness (Beta) Model for large graphs

Average RMSE of the filtered parameters with respect to the simulated DGP in
both the dense (dashed lines) and sparse (solid lines) regimes. The average RMSE
from the ERGM is plotted in blue, while the one from the SD-ERGM in red.
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Non stationary temporal networks Empirical Application

Sequence of Static Vs Score Driven Models Comparison
Binary Link Prediction: Existence of a Link in the Future

Comparison of Binary Models

e-Mid Data, rolling windows of 100 observations
Forecast up to 8 steps ahead (roughly two months)
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Non stationary temporal networks Empirical Application

Sequence of Static Vs Score Driven Models Comparison
Weight Prediction

Forecast Weights of Existing Links

Focus on the present links only
One step ahead

Method Score Driven AR(1) Single Snapshot Diebold-Mariano (p-value)

MSE Log. 0.859 0.882 1.73× 10−7

MAD Log. 0.726 0.737 1.21× 10−7
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Non stationary temporal networks Empirical Application

Comparison with Benchmark For Sparse Weighted Networks
Link Specific Regression Model from The literature

Localized Tobit Model of Giraitis et. al. 2016

Separate modeling of each N(N − 1) links
Censored Linear Regression: joint modeling of link and weights

Define 6 functions of Y(t−1) as regressors

Y
(t−1)
ij ;

lagged total daily amount lent by i to all other banks except j ;
lagged total daily amount borrowed by j from all other banks except i ;
lagged total daily amount lent by j to all other banks except i ;
lagged total daily amount borrowed by i from all other banks except j ;
lagged total daily lending and borrowing not involving either i or j .

Local likelihood estimate of the parameters
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Non stationary temporal networks Empirical Application

Comparison with Benchmark For Sparse Weighted Networks

Comparison in One Step Ahead Forecasting

Model Npar MSE Log. AUC
Localized Tobit ∼ N2 2.351 0.714
SD Gen. Fit. ∼ N 0.859 0.896

Lower number of parameters gives SD model an edge
Tobit does not decouple links’ presence from their weights

Model Ttrain MSE Log. MAD Log. AUC
Localized Tobit 100 2.351 1.067 0.714
ZA Regression 100 2.785 1.240 0.830
SD Generalized Fitness 100 0.859 0.726 0.896

Localized Tobit model of Giraitis et al (2016) vs simple Zero Augmented
regression that uses the same regressors vs score driven generalized fitness model.
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Non stationary temporal networks Empirical Application

External Regressors in SD Generalized Fitness Model

Example of Scalar x (t)

Binary part

p
(t)
ij =

1

1+ e−(
←−
θ
(t)
i +
−→
θ
(t)
j +x (t)βbin)

Weights

E
[
Yij

(t)|w > 0
]
= e

(←−
λ

(t)
i +
−→
λ

(t)
j +x (t)βw

)
.

Case study:
impact of interest rates on the probability of observing each link and on the
expected weight of observed links
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Non stationary temporal networks Empirical Application

EONIA as External Regressor on e-Mid

EONIA
is a measure of the effective interest rate prevailing in the euro inter-bank
overnight market. It is computed as a weighted average of the interest rates on
unsecured overnight contracts (Definition from https://stats.oecd.org/).
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Non stationary temporal networks Empirical Application

EONIA as External Regressor on e-Mid

Constant Fitness SD Fitness

BIC Bin 0.53× 106 0.45× 106

BIC Weight 1.46× 106 1.46× 106

AUC - Test Set 0.82 0.92
MSE Log. - Test Set 1.01 0.78

βbin 0.69± 0.06 0.29± 0.05
βw 0.022± 0.029 −0.13± 0.02

Importance of including time varying fitness to improve goodness of fit, both in
sample and out of sample

The probability of observing a link is positively related with the interest rates, hence
the lowering of interest rates tends to reduce the overall market interconnectdness,
even taking into account bank specific effects captured by the fitness

The weight of the observed overnight loans is negatively related with the average
interest rate in the market

Thanks to zero augmentation we separate the role of EONIA on links and weights
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Conclusion

Summary

Probabilistic models of networks are rich and flexible tools for investigating
structures and dynamics’ drivers
We study how an external shock propagates on a temporal network using a
VAR(1) dynamics of the fitness model
We derive the closed form for the nonlinear Impulse Response Function of a
generic shock
Prominent role in the shock spreading played by the lagged interactions
between latent variables
We propose a method based on Kalman Filter to estimate the dynamics and
the IRF
We propose a generalization allowing for non-stationary dynamics of fitness
and considering temporal weighted networks
Superior performances in link and weight prediction w.r.t. static version and
benchmark from the literature
Model external dependency on binary and weighted part
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