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Some codifying semantics

Systemic risk Threat of impairment of the financial system via correlation of distress1

I e.g., GFC

Systematic risk Non-diversifiable risk as a threat to the financial system

I from common exposures/portfolio overlaps

Contagion An initial idiosyncratic problem getting more widespread to the system

I cross-holdings (network effects), price mediated effects (fire sales),
funding-risk spillovers (sentiment-based)

Loosely, we decompose:
Systemic risk = Contagion*(Systematic risk + Idiosyncratic Risk)

1Bekaert et al. (2014)
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Financial interconnectedness: directed weighted networks

Financial interconnectedness makes
shocks propagate through the system.

But networks may have different
sensitivities per layer.

How can we quantify these effects?

Multilayer Network for Canadian banks. Nodes represent FIs, arrows
connections, layers asset classes, and colors FIs-categories. Source:
EBET-2A
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Research Question(s)
1) How do we quantify contagion/spillovers?
2) How much do different systemic risk channels contribute to the
transmission of shocks between banks?

Method
Estimation: Use correlation of time series.
Identification: the observed network provides equality constraints.
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Model

A multilayer network regression.
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Contemporaneous dependency
The systems’ observations in a vector yt. Then there are only two sources of
variations: endogenous and exogeneous

yt =
∑

a

βa
GG

a

︸ ︷︷ ︸
endogenous

yt + Xεt︸︷︷︸
exogeneous

∀t

yt (N × 1) vector of observables (here capital ratios of banks)

Ga observed zero-diagonal network matrices for a = 1, ..., A

βa
G network sensitivity

X observed dimension reducing matrix (N × S)

εt (S × 1) exogenous vector, εt ∼ N (0,Σε)

BalanceSheetIdentity
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Solving for yt

(
IN −

∑
a

βa
GG

a

)
yt = X · εt, (1)

yt =
(
IN −

∑
a

βa
GG

a

)
−1

︸ ︷︷ ︸
Leontief Inverse

·X · εt, Var [εt] = Σε

Then, the covariance matrix reads

Var[yt] =
(
IN −

∑
a

Gaβa
G

)−1

XΣεX
′

(
IN −

∑
a

Gaβa
G

)−1 ′

,

This we can estimate, and knowledge about Ga identifies β and Σε. Identification
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Application
Data:

I Monthly data from 2007 to today.

I 6 big and 4 smaller banks in Canada.

I Missing data is interpolated and returns are extrapolated for length.

Contagion via

I six inter-bank asset categories, (Ga),

I investor-sentiment networks (Hipp (2020) similar to Diebold and Yılmaz
(2014)),

I price-mediated effects (e.g., firesales) through common holdings.

Exogenous impacts via mortgage loans, business loans, securities, and
funding, (X).
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Was there any stress to decompose?
Index created by differences in system capital ratio.

Index = ∆Yt, Yt = w′yt. (System capital ratio)
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System’s Variance Decomposition by Channel

I High variance during GFC

I Strongest contribution from contagion

I idiosyncratic channels lower after Basel III, but increase with common
exposures after COVID
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Decomposing Contagion

I Market-based and price-mediated contagion mostly responsible for
peaks.

I Low spillovers/network effects today.
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Which shocks contributed the most?

I During the GFC, housing and share shocks are more prominent.

I Lately, housing, foreign and liabilities.
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Conclusion

I We developed a novel method to quantify contagion.

I We decomposed systemic risk in different channels over time.

I Contagion is in general important, but lately banks common exposures
contribute more risk.

email: rhipp@bankofcanada.ca
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The valuation vector vk

For example, take a lending between bank i and j

vl
j(λ, ε) = 1 + f l(λj) + ε

∂f l

∂λj
= βl

I The valuation depends on the leverage ratio of bank j, λj , and
exogenous shocks ε

I Endogeneity will follow from valuation-sensitivities βk

back
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More granularity, endogeneity, and normalization

λ =
∑

a

Ga · va
G(λ, εa

G) +Aex · vA(λ, εA)− L · vL(λ, εL) + $,

λ = F (λ, ε).

Ga interbank network for asset class a

λ leverage ratio

ε exogenous shock vectors

Valuation Vector
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Making it dynamic
Decomposition equation – four channels

Taking the total differential and equip with time index t:

yt =
∑

a

Gaβa
G,t︸ ︷︷ ︸

(I)

yt + Ãex
t βA,t︸ ︷︷ ︸
(II)

yt − L̃tβL,t︸ ︷︷ ︸
(III)

yt + [Ãex
t , −L̃t] · (εA, εL)′t︸ ︷︷ ︸

(IV )

.

(I) Contagion via direct interbank exposures interbank

(II) Price-mediated contagion Price-mediated

(III) Contagion via market-based networks Market-based

(IV) Common exposures Common exposures

NEVA
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Channel (I) – multilayer-network

Figure: Multilayer network. Each layer represents an asset class and thus can face a
different contagion coefficient. back
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Channel (II) - Price-mediated contagion

∂(ÃexβA(λ)dλ)
∂γ

=A ·A′ · diag(λ)−1dλ. (N ×N)

γ – price-impact function, i.e. sensitivity of valuation to aggregate volume of
rebalanced assets Quadratic impact of changes in banks’ portfolios on
earnings -> capital -> leverage

back
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Channel (III) – Market-based

Funding pressures from external creditors

fL(e) = (IN +GMB)e⊗−→a , (2)
idiosyncrasies

market−based

deposit−sensitivities−→a is an (KL × 1) vector of deposit-sensitivities and GMB is the investor
anticipated network of spillovers with zeros on the diagonal.

Example: Assume bank A gets distressed and thus faces higher funding
costs on the market. Now, if investors anticipate bank B to be connected to A,
they assume it is distressed too and thus B faces higher funding costs too.
This can happen in the absence of real economic links.

back

Hipp, Hałaj 20 / 13



Channel (IV) – Common Exposures

dλ = [Ã, −L̃] ·Θ · diag(βC)ε = [A, −L] ·Θ · εC , (3)

where εC is the vector of all systematic shocks, and Θ the selection matrix
resembling 1(k ∈ C), i.e., a (K +N ∗H)×#C matrix that contains a 1 in
position kC if the kth balance sheet item is affected by the systematic risk C
and 0 else.

back
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Small example of contagion

d𝜆𝐶𝐼𝐵𝐶
⋮

d𝜆𝑁𝐵𝐶 𝑡

=
𝛽1
⋮
𝛽7

∗ 𝑮 ∗
d𝜆𝐶𝐼𝐵𝐶

⋮
d𝜆𝑁𝐵𝐶 𝑡

+ [𝑨,−𝑳] ∗
𝐵1𝜀1

𝑚𝑘𝑡

⋮
𝐵9𝜀9

𝑚𝑘𝑡
𝑡

+
𝐵𝐶𝐼𝐵𝐶𝜀𝐶𝐼𝐵𝐶

⋮
𝐵𝑁𝐵𝐶𝜀𝑁𝐵𝐶 𝑡

change in
leverage ratio

New granular 
network data 
from EBET-2A

Common Exposures Idiosyncratic
risks

Loans (A2), 
Securities (B2), 
Mortgages (E2)

Portfolio Composition matrix

Securities Ca Deposits

Mortgages Foreign Dep.

⋮ ⋮

Contagion

Shocks in yellow structurally 
identified

Parameters in red are 
estimated
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Extension and estimation of Network Valuation of exposures
Barucca et al. (2020)

Original NEVA:

ei = Aex
i − Lex

i +
N∑

j=1
aijV([e1, . . . , eN ])−

N∑
j=1

lij

What we change to estimate the model?

I multi-layer network of exposures (rather then 1-layer)

I valuation of liabilities (rather than contractual)

I impact of changes in ill-liquid asset classes, ie price-mediated contagion
(rather than indirect contagion only through exogenous valuation of
direct exposures)

back
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Covariance and Correlation

Figure: Pairwise covariance and correlation over time.

back
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Start: Balance sheet identity

e = AvA − LvL, (4)

e (N × 1) vector of equity positions of banks

A matrix of assets

L matrix of liabilities

vA,L valuation vector (normalized to one)

econometricEquation
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Metric Calculations

yt =

(
IN −

∑
a

Gaβa
G − ÃtβA − L̃tβL

)
−1

︸ ︷︷ ︸
Leontief Inverse: Contagion

·

 [Ãt, −L̃t] · εM
t + εI

t︸ ︷︷ ︸
Systematic and Idiosyncratic

 = A−1
t B

Take (N ×N) contagion matrix as Cont = A−1
t − IN , with average contagion:

average contagion =
1
N

∑
i

∑
j

Conij,t

.

Take (N ×K) common exposure matrix as Commt = [Ãt, −L̃t]diag(σM
ε )0.5 , with

average common exposure:

average contagion =
1
N

∑
i

∑
k

Commik,t

Define the (N ×N) idiosyncratic risk matrix as Idiot = diag(σI
ε )0.5 , with average common

exposure:

average idiosyncratic =
1
N

∑
i

∑
j

Idioij,t

back
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Identification
Sketch

The mapping from "observed/estimated" to "unknown/to be identified
parameters" reads

Var[yt] = Σ = A−1(β)B(Σε) A−1(β) ′︸ ︷︷ ︸
S(S+1)/2+A unknowns

N(N+1)/2 equations

If S(S + 1)/2 +A < N(N + 1)/2 and no "multicollinearity" of networks, the
Jacobians have full rank and Theorem 6 of Rothenberg (1971) identifies the
mapping.

Intuitively, the observed network matrices impose equality constraints (as
used in the SVAR literature).

Estimation via maximum likelihood or method of moments. back
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