Workshop on Complex Networks in Banking and Finance

Fields Institute, University of Toronto, June 26th 2024

Enhancing Financial Market Surveillance Processes through a Comprehensive Review of their Data Requirements and Machine Learning Algorithms

Aceiton Campos P. Ben-Abdallah R.

Elia E.

Acknowledgments

Financial Market Surveillance Intelligence Centre, École des Sciences de la Gestion, Université du Québec à Montréal.

Table of content

Research context and question

Related work

Methodological approach

Results and contribution

Future work

Research context

• Financial regulators have been exploring with machine learning to find new approaches for their market surveillance activities.

- Since 2016, the Financial Conduct Authority (FCA) of England has been organizing TechSprints (proof-of-concept initiatives).
- In 2022, the Bank of England along with the FCA presented the Artificial Intelligence Public-Private Forum (AIPPF) report.

Research context

- The Monetary Authority of Singapore (MAS) has carried out proof-ofconcept initiatives for exploring Al techniques (2018).
- In 2022, MAS along with the Bank for International Settlements (BIS), launched Project Ellipse, a proof-of-concept initiative to explore an integrated regulatory data and analytics platform.

Research context

- In Québec, the Autorité des Marchés Financiers (AMF) tested in 2017 a machine learning algorithm for analyzing unstructured text in Over the Counter (OTC) derivative data.
- In 2018, The Regulatory Division of the Montréal Exchange signed a joint initiative with IVADO to explore innovative market data analysis and surveillance solutions to detect deceptive marketplace behaviors.
- In 2024, the AMF signed a <u>partnership</u> with Mila the Québec Artificial Intelligence Institute (June 19th).

Research question

- Financial regulators and institutions are exploring machine learning.
- Challenge: they require to define the right data according to the case of study and machine learning ("garbage-in / garbage-out").
- Data set requirements allow to identify the right data.

What are the data set requirements for machine learning to detect financial market manipulation practices?

Related work

- Tiwari, S., Ramampiaro, H., & Langseth, H. (2021). Machine learning in financial market surveillance: A survey. IEEE Access, 9, 159734-159754.
- Zulkifley, M. A., Munir, A. F., Sukor, A., Edil, M., & Mohd Shafiai, M. H. (2023). A Survey on Stock Market Manipulation Detectors Using Artificial Intelligence. Computers, Materials & Continua, 75(2).

Research approach

- Previous works show a high-level description of datasets, machine learning algorithms and metrics from academic documents related to financial market manipulation.
- Our approach supports financial regulators and institutions in the seeking of academic research related to their objectives.
- The research provides detailed findings about data sources, dataset requirements and data pre-process according to machine learning algorithms and the case study, considering a Financial Market Surveillance Process (FMSP).

Financial Market Surveillance Process (FMSP)

Methodological approach: 6 review steps

This research follows the general steps and guidelines proposed by Templier et Paré (2015) for a narrative literature review in the domain of Information Systems (IS).

Review: steps 1-4

As a result of the first 4 steps, we identified 562 documents and 71 documents were retained.

Step 1: Formulating the the Decording Step 3: Screening Step 4: Asse the Decording for inclusion guality

Review: step 5

• We extracted data from documents retained (71), through Comprehensive Categories based on the FMSP configured in NVivo software.

Financial Market Surveillance Process (FMSP)						
Step 1 Trading data surveillance	Step 2 Alert of market manipulation	Step 3 Analysis of scenario	Step 4 Confirmation of manipulation scenario	Step 5 Feedback, documentation and archive		
Manipulation practice and rule-based data source (MMS):						
What dataset requirements? What dataset requirements? What data pre-processing? What data pre-processing? What machine learning? What machine learning?			ts? g?			

Step 1: Step 2: Searching Step 3: Screening for inclusion

Review: step 5

Comprehensive Categories

1. Financial Market Surveillance Process (FMSP)

2. Financial Market Manipulation (specific and general market anomalies)

3. Data source

4. Dataset requirements

5. Data pre-processing

Machine Learning (supervised, unsupervised, ensemble)
 Hyperparameter definition
 Benchmark

Performance Metrics

Step 1: Formidding the the Iterature for inclusion guilty modules

About financial market manipulation and market anomalies

Comprehensive Categories

1. Financial Market Surveillance Process (FMSP)

2. Financial Market Manipulation (specific and general market anomalies)

3. Data source

4. Dataset requirements

5. Data pre-processing

6. Machine Learning (supervised, unsupervised, ensemble)
 Hyperparameter definition
 Benchmark

Performance Metrics

er Trading	Insider trading
	Pump and dump
	Short and distort
	Cornering
	Squeezing
	Advancing the bid
	Reducing the ask
Financial Market Manipulation Types	Matched orders
	Painting the tape
	Wash sales
	Capping
	Begging
	Marking the close
	Open the close
	Banging the close
	Front running
	Churning
	Scalping
	Spoofing
	Pinging
	Quote stuffing
	Ramping
	Layering
	Order book fade

Insider 1

the Step 2: Searching Step 3: Screening

Review: step 6

• Findings were analized and synthesized based on the FMSP to keep the same research perspective.

Paper .	FMSP		ΨÎ
2021_Collusion_Set_Detection_within_the_Stock_Market_using_Graph_Clustering_amp_Anomaly_Detection -	Alert of I	Manipula	tion
2022_A Machine Learning Approach to Detection of Trade-Based Manipulations in Borsa Istanbul -	Alert of	Manipula	tion
2022_A Novel Anomaly Detection Approach for Nifty Stocks using Machine Learning for -	Alert of I	Manipula	tion
2022_A Transformer Model for Stock Price Manipulation Detection in the Stock Exchange of Thailand -	Alert of I	Manipula	tion
2022_A_Hybrid_Prediction_Model_Integrating_GARCH_Models_With_a_Distribution_Manipulation_Strategy_Ba	Alert of I	Manipula	tion
2022_Detection and analysis of atypical stock transactions with possible misuse of insider information and mark	Alert of I	Manipula	tion
2022_Identification of Stock Market Manipulation with Deep Learning -	Alert of I	Manipula	tion
2022_Stock market manipulation detection using feature -	Alert of I	Manipula	tion
2023_A machine learning attack on illegal trading -	Alert of I	Manipula	tion
2023_Ensemble of supervised and unsupervised deep neural networks for stock -	Alert of I	Manipula	tion
2023_Unsupervised Manipulation Detection Scheme for Insider Trading -	Alert of I	Manipula	tion
2022_Can Individual Human Financial Behaviour Be Mathematically Modelled -	Analysis	of Scen	ario
2022_Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network -	Analysis	of Scen	ario
2022_Sentiment Analysis of Elon Musk's Twitter Data Using LSTM and ANFIS-SVM -	Analysis	of Scen	ario
2023_LLD_A_Low_Latency_Detection_Solution_to_Thwart_Cryptocurrency_Pump_amp_Dumps -	Analysis	of Scen	ario
2023_The Doge of Wall Street Analysis and Detection of Pump and Dump Cryptocurrency Manipulations -	Analysis	of Scen	ario

Review: step 6 (example of results 1 of 4)

Paper T	FMSP 🖵	Financial Market Ma	Market Anomalies	Dataset Source
2021_Collusion_Set_Detection_within_the_Stock_Market_using_Graph_Clustering_amp_Anomaly_Detection -	Alert of Manipulation		Anomaly defined by the researcher	Financial Market Data
2022_A Machine Learning Approach to Detection of Trade-Based Manipulations in Borsa Istanbul -	Alert of Manipulation		Regulator analysis	Financial Market Data
2022_A Novel Anomaly Detection Approach for Nifty Stocks using Machine Learning for -	Alert of Manipulation		Normal-abnormal behavior	Financial Market Data, Internet Data
2022_A Transformer Model for Stock Price Manipulation Detection in the Stock Exchange of Thailand -	Alert of Manipulation	Spoofing, Pump and dump	0	Financial Market Data
2022_A_Hybrid_Prediction_Model_Integrating_GARCH_Models_With_a_Distribution_Manipulation_Strategy_B	Alert of Manipulation		Anomaly defined by the researcher	Financial Market Data
2022_Detection and analysis of atypical stock transactions with possible misuse of insider information and mark	Alert of Manipulation		Normal-abnormal behavior	Financial Market Data
2022_Identification of Stock Market Manipulation with Deep Learning -	Alert of Manipulation	Pump and dump, Squeezi	ng	Financial Market Data, Internet Data, C
2022_Stock market manipulation detection using feature -	Alert of Manipulation		Regulator analysis	Financial Market Data
2023_A machine learning attack on illegal trading -	Alert of Manipulation	Insider trading		Financial Market Data
2023_Ensemble of supervised and unsupervised deep neural networks for stock -	Alert of Manipulation	Spoofing, Pump and dump	Normal-abnormal behavior	Financial Market Data
2023_Unsupervised Manipulation Detection Scheme for Insider Trading -	Alert of Manipulation	Insider trading		Financial Market Data
2022_Can Individual Human Financial Behaviour Be Mathematically Modelled -	Analysis of Scenario	Pump and dump	Anomaly defined by the researcher	Financial Market Data, Internet Data
2022_Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network -	Analysis of Scenario	Insider trading		Internet Data,Complementary Data
2022_Sentiment Analysis of Elon Musk's Twitter Data Using LSTM and ANFIS-SVM -	Analysis of Scenario		Suspicious transactions identified	Internet Data
2023_LLD_A_Low_Latency_Detection_Solution_to_Thwart_Cryptocurrency_Pump_amp_Dumps -	Analysis of Scenario	Pump and dump	Normal-abnormal behavior	Financial Market Data, Internet Data
2023_The Doge of Wall Street Analysis and Detection of Pump and Dump Cryptocurrency Manipulations -	Analysis of Scenario	Pump and dump		Financial Market Data, Internet Data

 \star

 Step 1: Formulating the problem
 Step 2: Searching the literature
 Step 3: Screening for inclusion
 Step 4: Assessing quality

Review: step 6 (example of results 2 of 4)

Paper 🗸	Dataset_Requireme	Data Preprocess	Synthetic Data	•
2021_Collusion_Set_Detection_within_the_Stock_Market_using_Graph_Clustering_amp_Anomaly_Detection -	Data Label, Data granular	Balanced dataset, Features detection and optimization, Time features	Collusive transactions	
2022_A Machine Learning Approach to Detection of Trade-Based Manipulations in Borsa Istanbul -	Data Label, Data granular	Balanced dataset, Features detection and optimization, Time features	,	
2022_A Novel Anomaly Detection Approach for Nifty Stocks using Machine Learning for -	Data Label, Data cleaning	Time features, Indicators, Features and Control generation		
2022_A Transformer Model for Stock Price Manipulation Detection in the Stock Exchange of Thailand -	Data Label,	Balanced dataset, Indicators, Features and Control generation	Spoofing-Pump&Dump-	NA
2022_A_Hybrid_Prediction_Model_Integrating_GARCH_Models_With_a_Distribution_Manipulation_Strategy_Ba	aData Label, Data granular	Supervised, Time features, Indicators, Features and Control generation	r	
2022_Detection and analysis of atypical stock transactions with possible misuse of insider information and mark	Data Label, Data granular	Unsupervised, Balanced dataset, Features detection and optimization	,	
2022_Identification of Stock Market Manipulation with Deep Learning -	Data Label,	Time features,		
2022_Stock market manipulation detection using feature -	Data Label, Data granular	Indicators, Features and Control generation		
2023_A machine learning attack on illegal trading -	Data Label, Data granular	Time features, Indicators, Features and Control generation		
2023_Ensemble of supervised and unsupervised deep neural networks for stock -	Data Label, Data granular	Balanced dataset, Time features, Indicators, Features and Control gen	Spoofing-Pump&Dump-	NA
2023_Unsupervised Manipulation Detection Scheme for Insider Trading -	Data granularity,	Features detection and optimization, Time features, Indicators, Featur	e	
2022_Can Individual Human Financial Behaviour Be Mathematically Modelled -	Data Label, Data granular	Time features,		
2022_Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network -	Data granularity,	Balanced dataset, Features detection and optimization, Indicators, Fe		
2022_Sentiment Analysis of Elon Musk's Twitter Data Using LSTM and ANFIS-SVM -	Data Label, Data granular	Supervised, Unsupervised, Time features, Sentiment and text analysis	,	
2023_LLD_A_Low_Latency_Detection_Solution_to_Thwart_Cryptocurrency_Pump_amp_Dumps -	Data Label, Data granular	Features detection and optimization, Time features, Indicators, Featur	e	
2023_The Doge of Wall Street Analysis and Detection of Pump and Dump Cryptocurrency Manipulations -	Data Label, Data docume	Time features, Indicators, Features and Control generation		

 $\mathbf{\star}$

Step 1: Formulating the problem Step 2: Searching Step 3: Screening Step 4: Assessing quality

Review: step 6 (example of results 3 of 4)

Paper .	Supervised Machine L 💌	Unsupervised Machin	Ensemble Machine Learning	,
2021_Collusion_Set_Detection_within_the_Stock_Market_using_Graph_Clustering_amp_Anomaly_Detection			Graph-Anomaly Detection clustering	
2022_A Machine Learning Approach to Detection of Trade-Based Manipulations in Borsa Istanbul -	Decision Tree, Naive Bayes	, SVM, Logistic Regression,	Random Forest	
2022_A Novel Anomaly Detection Approach for Nifty Stocks using Machine Learning for -		OCSVM		
2022_A Transformer Model for Stock Price Manipulation Detection in the Stock Exchange of Thailand -	Transformation Model			
2022_A_Hybrid_Prediction_Model_Integrating_GARCH_Models_With_a_Distribution_Manipulation_Strategy_E	Based_on_LSTM_Networks_for_	Stock_Market_Volatility -	LSTM GARCH	
2022_Detection and analysis of atypical stock transactions with possible misuse of insider information and mar	ANN Multilayer Perceptron,	Decision Tree, Naive Bayes,	AdaBoost-GradBoost- RandForest	
2022_Identification of Stock Market Manipulation with Deep Learning -		LSTM-Dynamic Thresholdin	g	
2022_Stock market manipulation detection using feature -	RNN-LSTM			
2023_A machine learning attack on illegal trading -		Nearest neighbor dynamic ti	me warping-DTW	
2023_Ensemble of supervised and unsupervised deep neural networks for stock -	RNN-LSTM	LSTM-AutoEncoder		
2023_Unsupervised Manipulation Detection Scheme for Insider Trading -		Kernel Density Estimation-K	DE and MKDE	
2022_Can Individual Human Financial Behaviour Be Mathematically Modelled -				
2022_Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network -	Deep Neural Network-Multit	ask		
2022_Sentiment Analysis of Elon Musk's Twitter Data Using LSTM and ANFIS-SVM -	RNN-LSTM		Fuzzy rule based model (ANFIS) -SVM	
2023_LLD_A_Low_Latency_Detection_Solution_to_Thwart_Cryptocurrency_Pump_amp_Dumps -		LSTM-AutoEncoder		
2023 The Doge of Wall Street Analysis and Detection of Pump and Dump Cryptocurrency Manipulations -			Random Forest, AdaBoost-Decision Tree	

Review: step 6 (example of results 4 of 4)

Paper .	Hyperparameter definitio 💌	Benchmark 🔹	Performance Metric 💌
2021_Collusion_Set_Detection_within_the_Stock_Market_using_Graph_Clustering_amp_Anomaly_Detection -	Hyperparameter definition		Performance Metrics
2022_A Machine Learning Approach to Detection of Trade-Based Manipulations in Borsa Istanbul -			Performance Metrics
2022_A Novel Anomaly Detection Approach for Nifty Stocks using Machine Learning for -	Hyperparameter definition		
2022_A Transformer Model for Stock Price Manipulation Detection in the Stock Exchange of Thailand -	Hyperparameter definition		Performance Metrics
2022_A_Hybrid_Prediction_Model_Integrating_GARCH_Models_With_a_Distribution_Manipulation_Strategy_Bate	Hyperparameter definition		Performance Metrics
2022_Detection and analysis of atypical stock transactions with possible misuse of insider information and mark			Performance Metrics
2022_Identification of Stock Market Manipulation with Deep Learning -	Hyperparameter definition	Statisticial Models,	Performance Metrics
2022_Stock market manipulation detection using feature -	Hyperparameter definition	ML Supervised, Statisticial Models,	Performance Metrics
2023_A machine learning attack on illegal trading -	Hyperparameter definition	ML Unsupervised, Statisticial Mode	Performance Metrics
2023_Ensemble of supervised and unsupervised deep neural networks for stock -	Hyperparameter definition		Performance Metrics
2023_Unsupervised Manipulation Detection Scheme for Insider Trading -		ML Unsupervised,	Performance Metrics
2022_Can Individual Human Financial Behaviour Be Mathematically Modelled -			Performance Metrics
2022_Identification of Insider Trading in the Securities Market Based on Multi-task Deep Neural Network -	Hyperparameter definition	ML Supervised,	Performance Metrics
2022_Sentiment Analysis of Elon Musk's Twitter Data Using LSTM and ANFIS-SVM -	Hyperparameter definition		Performance Metrics
2023_LLD_A_Low_Latency_Detection_Solution_to_Thwart_Cryptocurrency_Pump_amp_Dumps -	Hyperparameter definition		Performance Metrics
2023 The Doge of Wall Street Analysis and Detection of Pump and Dump Cryptocurrency Manipulations -	Hyperparameter definition	ML Supervised.	Performance Metrics

Step 1: Formulating the problem the literature for inclusion Step 2: Searching Step 3: Screening Quality

Research contribution

Our review approach:

- Links financial regulators/institutions requirements (FMSP) with academic research.
- Provides a good starting point for researchers interested in financial market manipulation and machine learning.
- Identifies practices for labelling data (from financial regulators documentation) and analysis of scenario (Reedit, X/Twitter, Telegram).
- Describes how previous research prepared datasets (data mapping, time features, data balance techniques, feature detection and synthetic data).
- Presents machine learning algorithms, hyperparameters, benchmark and metrics.

Future work

• This review is a relevant component for proposing an artifact based on Design Science to support financial regulators and institutions in the development of machine learning in financial market manipulations.

Workshop on Complex Networks in Banking and Finance

Fields Institute, University of Toronto, June 26th 2024

Enhancing Financial Market Surveillance Processes through a Comprehensive Review of their Data Requirements and Machine Learning Algorithms

Aceiton Campos P. Ben-Abdallah R.

Elia E.

NVIVO example

NVIVO ‡‡ <	File	Home	Import	Create	e Explo	re Sh	nare Mo	dules	
Literature_Review_P1.nvp	Ē -	<u>D</u> -	: <u> </u>	⊙, -	111 -	0-	⁼o	Ē	R
	Clipboard	Item	Organize	Query	Visualize	Code	Autocode	e Range Code	Unc
A QUICK ACCESS	Codes								
IMPORT	⊛ N	ame					≜ 🖙 🛛 Files	Refere	ences
🗄 Data 🗸 🗸	⊕ O 2	Financial	Market Ma	anipulatio	n		0	0	
Files		Dataset					0	0	
File Classifications	•• ○ 4. •• ● •• ● •• ●	Dataset_I	Requireme	nts			0	0	
Externals	⊕ O 5.	Data Pre	process				0	0	
ORGANIZE		Machine	Learning				0	0	
= Coding	Ξ-Ο	6.1 Supe	ervised ML				43	76	
= Coding *	-	0 6.1.1	ANN				5	5	
Sentiment		0 6	.1.1.1 ANN	Genetic	Algorithm		1	1	
Relationshins		0 6	1.1.2 FFNN	N			1	1	
Relationship Types		0 6	.1.1.3 RNN	-LSTM			5	8	
		0 6	.1.1.4 ELM				1	1	
Cases		-0 6	.1.1.5 Tran	sformatio	n Model		1	1	
l Notes >		0 6	.1.1.6 ANN	Multilay	er Percepti	ron	1	1	
• Sets >		0 6	.1.1.7 Deep	Neural N	Vetwork ar	nd M	1	1	
EXPLORE		0 6	.1.1.8 ANN				1	1	
		O <u>6.1.2</u>	Decision	Tree			11	11	
		0 6.1.3	Naive Bay	ves			6	6	
Query Results	in the second	0 6.1.4	SVM				10	11	
Coding Matrices	i i i i i i i i i i i i i i i i i i i	O <u>6.1.5</u>	Logistic R	egressior	n		6	6	
	A PA	137 Items	;						

ESG UQÀM

sample files.

The sample files contain an 'orderbook' file, a 'message' file and a readme summarizing the data's properties. All sample files are based on the official NASDAQ Historical TotalView-ITCH sample.

demo code.

We have prepared small demo codes for Matlab and R to help you get started with LOBSTER's data. The demo files for Matlab and R contain a small code sample, a sample file and a readme. The download links and further code is available in the code help.

download samples.

Name	Ticker	Level	Size (MB)	Download
Amazon	AMZN	1	0.7	download
		5	2	download
		10	4	download
Apple	AAPL	1	1.3	download
		5	4.2	download
		10	6.5	download
Google	GOOG	1	0.5	download
		5	1.6	download
		10	2.5	download
Intel	INTC	1	3.3	download
		5	5.8	download
		10	6.7	download

https://lobsterdata.com/info/DataSamples.php

Snapshot of the short-lived period pump-and-dump scheme on the Westinghouse Air Brake (WAB) stock in the NYSE from December 14, 2011. *Source:* (Photo Courtesy of Nanex). From https://doi.org/10.1016/j.eswa.2023.119698.

Review process

Research keywords were based on the taxonomy of financial market manipulations proposed by Siering et al. (2017) and the taxonomy of data mining tasks, methods and algorithms proposed by Sharda et al. (2018).

inancial market considered	t manipulation types l in the review				
der Trading	Insider trading				
	Pump and dump				
	Short and distort				
	Cornering				
	Squeezing				
	Advancing the bid				
	Reducing the ask				
	Matched orders				
Financial Instrument	Painting the tape				
	Wash sales				
	Capping				
Manipulation	Begging				
	Marking the close				
	Open the close				
	Banging the close				
	Front running				
	Churning				
	Scalping				
	Spoofing				
	Pinging				
	Quote stuffing				
	Ramping				
	Layering				
	Order book fade				
	²⁶ ESG UQ				

Insi

Review process

General Steps	Methodological Guidelines
	Specify the review's primary goal(s)
Step 1: Formulating the problem	Clearly define the review's key concept(s) and establish its boundaries
	Use a combination of data sources and search approaches
Step 2: Searching the literature	Avoid restrictions that are not based on the research question(s)
	Use inclusion criteria that reflect the research question(s)
Step 3: Screening for inclusion	Include studies from reputable sources
Step 4: Assessing quality	Consider the quality assessment in the selection of studies or the interpretation of the findings
Step 5: Extracting data	Use a structured procedure for data extraction
Step 6: Analyzing and synthesizing data	Summarize the included studies in detail

Related work (example)

TABLE 1. State-of-the-art supervised, semi-supervised, and unsupervised machine learning techniques used for financial market surveillance.

Paper	Methods	Manipulation type	Evaluation measures	Data
Golmohammadi et al. [32]	k-NN, SVM, NN, RF, DT	Wash trade	Precision, Recall, F2 measure	Diaz <i>et al.</i> [7]
Frery et al. [48]	Learning to rank	-	Average, Precision	A highly unbalanced data
Öğüt <i>et al.</i> [6]	SVM, k-NN, ANN, LR	Trade-based manipulation	Recall, Precision	Istanbul Stock Market data
Ahmed et al. [49], Ahmed et al. [13]	Clustering algorithms	Trade-based manipulation	Recall, Precision, and F2 measure	ASX data
Das et al. [40], Das et al. [50]	AAD, iForest-AAD, Tree-based methods	Point anomaly	Quantitative measures	UCI datasets [51]
Cao <i>et al.</i> [3]	k-NN, OCSVM	Price manipulation	AUC/ROC curve	NASDAQ
Li <i>et al.</i> [8]	k-NN, DT, LR, SVM, ANN	Trade-based manipulation	AUC	China Security Regulatory Commission (CSRC)

•Tiwari, S., Ramampiaro, H., & Langseth, H. (2021). Machine learning in financial market surveillance: A survey. IEEE Access, 9, 159734-159754.

Related work (example)

TABLE 2. State-of-the-art machine learning methods and statistical techniques used for anomaly detection in sequential/time-series data.

Paper	Methods	Manipulation type	Evaluation measures	Data
Mannila et al. [65]	Event sequencing using windowing technique	Trade-based manipulation	Sensitivity, F2 measure, Specificity	-
Atallah <i>et al.</i> [11]	Event sequencing using windowing technique	Collective, Contextual	Qualitative measures	Walmart data
Rossi <i>et al.</i> [66]	Frequent item set mining using windowing technique and categorical clustering	Collective, Contextual	Sensitivity, Clustering silhouette	Smart meter data
Golmohammadi and Zaiane [67]	CAD	Collective, Contextual	F-measure, Precision, Recall	S&P500 index
Laptev et al. [68]	ARIMA, Kalman filtering	Collective, Contextual	F1-Score	Time-series data
Shipmon et al. [31]	DNN, RNN, LSTM	Collective, Contextual	Confusion matrices, Recall, Precision	Google stream data
Zhu and Laptev [69]	Bayesian deep model	Collective, Contextual	1 0	Uber cab data
Munir et al. [70]	CNN	Point, Contextual	F-score	Yahoo Webscope
Zhang et al. [71]	Variational autoencoder	Collective, Contextual	AUC	UCR [72], UCI

•Tiwari, S., Ramampiaro, H., & Langseth, H. (2021). Machine learning in financial market surveillance: A survey. IEEE Access, 9, 159734-159754.

Related work (example)

Table 1: Summary of the supervised conventional machine learning methods in stock market manipulation detection

Study	Data	Method	Strength	Weakness
Zare et al. [53]	Segmented tick data of Tehran stock exchange	Skewness analysis of Gaussian modelling of manipulated & non-manipulated stock prices	Local daily pattern using partitioned intraday data	Skewness information is not enough to capture complex manipulation schemes
Cao et al. [54]	Four stocks of Apple, Google, Intel & Microsoft (NASDAQ)	Log form of order price, volume & trading time input to SVM & kNN	Optimized for spoof trading & quote stuffing cases	Performance validation is suboptimal as testing is done on small number of cases
Golmohammadi et al. [55]	33 Manipulation cases from Dow Jones industrial companies	Six conventional classifiers: inference trees, RF, NB, SVM, ANN & kNN	Applied SMOTEBoost to equalize imbalanced dataset distribution during training	Low performance with the maximum F2 measure of 53%
Uslu et al. [56]	Daily data of Borsa Istanbul (2010–2015)	Benchmarked against six conventional classifiers: LR, kNN, decision tree, SVM, NB and RF	A set of comprehensive 20 input features of daily stock data	Manipulation cases selection is suboptimal as the duration span is too long in some cases & vice versa
Ougut et al. [57]	277 manipulation cases from Borsa Istanbul (1995–2004)	Four conventional classifiers: SVM, ANN, LR and discriminant analysis	Better dataset for the non-manipulated cases as it is collected from the same companies	Utilizes only three input features: average daily return, average change in trading volume and average volatility
Li et al. [58]	64 manipulation cases by China securities regulation commission	Opening, highest, lowest, closing prices & trading volume input to 7 classifiers: kNN, SVM, DT, LDA, QDA, LR, ANN	Quantified the performance using both tick and daily data input	Suboptimal tick data classifiers with around 50% detection rate only

•Zulkifley, M. A., Munir, A. F., Sukor, A., Edil, M., & Mohd Shafiai, M. H. (2023). A Survey on Stock Market Manipulation Detectors Using Artificial Intelligence. Computers, Materials & Continua, 75(2).

30