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Relevance of the problem

Bank Transaction Data
(account-level credits and debits)

Highly useful, e.g. to train fraud
detection or product
recommendation models.

Highly sensitive, with PII on
spending habits; as little as four
credit card transactions can be
enough to de-anonymize (de
Montjoye et al., 2015).
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Current Work and Hypothesis

Current models use GANs (e.g.
DoppelGANger) and
transformers (e.g. Banksformer)
and work to a certain extent,
but there is room for
improvement in the periodicity
or value distributions, for
example (Liu, 2023).
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Current Work and Hypothesis

Idea: separate real, training,
data into clusters, generate
new data based on each
section individually.

Less variability.
Potentially closer to reality!
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Why use graphs?

Advantages

No need for previous knowledge on client behaviours.

Robustness against bad choices of summary statistics of transaction
series, like frequency of transactions or average amount transacted.

Problem

How do we build edges between nodes?
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Data overview

Not many open data sources for banking transactions, ones available
are old and not representative or current trends. With that in mind. . .

Use real open-source transaction data from Czech Banks in the
90s. https://data.world/lpetrocelli/some-translatedreformatted-
czech-banking-data

Column Description Property Features

operation Mode of transaction Categorical

Categories (num. entries)
Cash Withdrawal: 434918
Remittance to Another Bank: 208283
Credit in Cash: 156743
Collection from Another Bank: 65226
Credit Card Withdrawal: 8036

amount Transaction amount Numerical
(Czech koruna)

Min: 0.0
Mean: 5924.15
Max: 87400.0
Standard Deviation: 9522.74

balance Account balance af-
ter transaction

Numerical
(Czech koruna)

Min: -41125.7
Mean: 38518.33
Max: 209637.0
Standard Deviation: 22117.87
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Data overview

Methodology

Group transactions by accounts as time series, categorical data
flipped to columns. Every account becomes a node.

Add edges between accounts, using combinations of account features
and distance measures, to be explored soon.

Measure the clusterability of the resulting graph with the Eigengap
heuristic.
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Creating nodes and edges

With every node being an
account, we can calculate the
distance between nodes using,
for example, Dynamic Time
Warping (DTW) or
Compression-based Algorithms.

Once we have the distances,
edges are added between nodes
if they are below a certain
threshold. In our case, we tested
multiple thresholds: median
distance +/- 0, 1, 2 and 3
standard deviations.

Figure: Distribution of edge weights,
using only amount value and DTW
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Dynamic Time Warping

DTW is a technique used to
measure the dissimilarity
between two time series that
may vary in time or speed.

Expandable to multivariate time
series, by combining the
distances for each column
(Petitjean et al., 2011).
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Compression-based distance algorithms

Compression-based algorithms leverage the file compressing power of
regular compression algorithms to measure how many times larger is the
compressed file of both series concatenated, compared to compressing
each series individually and summing their sizes.

Figure: Compression-based dissimilarity measure (Keogh et al., 2007)
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The Eigengap Heuristic: Math Background

Recall,

The graph of N time series can be represented by the adjacency matrix A
such that

A
(N×N)

= [wij ] ,

wij ∈ {0, 1},
wii = 0, ∀i ,

(1)

with wij = 1 if the distance dij between nodes i and j is smaller than the
threshold chosen, wij = 0 otherwise.

Leal Cardoso Pita, Lawryshyn (UofT) Transaction Data Clustering CNBF 2024 12 / 21



The Eigengap Heuristic: Math Background

Then,

The normalized Laplacian matrix L is defined such that

defining D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn

 , (where,di =
∑
j

wij),

and L = D− A,

yields L = D−1/2LD−1/2.

(2)

Finally,

If A is fully connected, the eigenvalue λ0 is 0; all other eigenvalues are in
(0, 2] (Chung, 2001). Eigengap heuristic: the ideal number of clusters
for the graph is around the index of the first spike in eigenvalues.
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The Eigengap Heuristic: Math Background

(a) N=250 (b) N=2500 (c) N=25000

Figure: Plots of eigenvalues of adjacency and Laplacian matrices for varying
number of nodes (Miasnikof et al., 2024)
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The Eigengap Heuristic: Clusterability interpretation

Idea

Although the original point of the heuristic is to yield the ideal number of
clusters, in the case of the index being 1 or N − 1, we can interpret it as a
clusterability metric: the graph is unclusterable.

Table: Index of largest spike of eigenvalues of L

Standard deviations from the mean distance
-3 -2 -1 0 1 2 3

DTW
all features N/A N/A N/A N/A 3 2 1
amount only N/A N/A N/A N/A N/A 1 1
balance only N/A N/A N/A 1 1 1 1

Compression
amount only N/A N/A N/A 1 498 498 498
balance only N/A N/A N/A 1 1 1 1
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Eigenvalues of the normalized Laplacian matrices for DTW
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Eigenvalues of the normalized Laplacian matrices for DTW
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Eigenvalues of the normalized Laplacian matrices for
Compression-based
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Clusterability conclusion and thoughts

Training data appears to be unclusterable, but this conclusion
depends entirely on the original dataset and how the tabular data was
converted into a graph.

Current and future work should focus on similarity metrics and edge
representation on this and other datasets. The clusterability measure
using the Eigengap heuristic could also be used to determine the
fidelity of synthetic transaction data.
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