The Moore–Tachikawa conjecture via shifted symplectic geometry

Maxence Mayrand

University of Sherbrooke

July 15, 2024

Joint work with Peter Crooks

Overview 1/14

Theorem (Kostant 1963). Let G be a complex semisimple group, $\mathfrak{g} \coloneqq \operatorname{Lie}(G)$.

- (1) \exists global slice $\mathcal{S} \subset \mathfrak{g}^*_{\mathrm{reg}}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are *abelian* for all $\xi \in \mathfrak{g}^*_{\mathrm{reg}}$
- (3) $\mathfrak{g}^*_{\rm reg}$ is *Hartogs* : holomorphic functions on $\mathfrak{g}^*_{\rm reg}$ extend to \mathfrak{g}^*

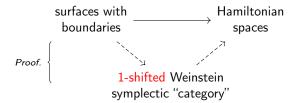
Overview 1/14

Theorem (Kostant 1963). Let G be a complex semisimple group, $\mathfrak{g} \coloneqq \operatorname{Lie}(G)$.

- (1) \exists global slice $\mathcal{S} \subset \mathfrak{g}^*_{\mathrm{reg}}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are *abelian* for all $\xi \in \mathfrak{g}^*_{\mathrm{reg}}$
- (3) $\mathfrak{g}^*_{\rm reg}$ is Hartogs : holomorphic functions on $\mathfrak{g}^*_{\rm reg}$ extend to \mathfrak{g}^*

Upshot of the talk.

Any not necessarily semisimple Lie algebra satisfying (1)–(3), or, more generally, Poisson affine variety satisfying analogues of (1)–(3), defines a Topological Quantum Field Theory valued in Hamiltonian spaces.



The case g complex semisimple is part of the Moore-Tachikawa conjecture.

G complex semisimple, $\mathcal{S}\subset\mathfrak{g}^*_{\mathrm{reg}}$ Kostant slice

$$G \times G$$
 (*) T^*G

$$G \times G \circlearrowleft T^*G = G \times \mathfrak{g}^*$$

$$G \circlearrowleft G \times \mathcal{S}$$

$$\begin{split} G \times G \circlearrowleft T^*G &= G \times \mathfrak{g}^* \\ G \circlearrowleft G \times \mathcal{S} \\ \{(g,\xi) \in G \times \mathcal{S} : \operatorname{Ad}_g^* \xi = \xi\} \end{split}$$

G complex semisimple, $\mathcal{S}\subset\mathfrak{g}^*_{\mathrm{reg}}$ Kostant slice

Three Hamiltonian spaces:

$$\begin{array}{cccc} & \longmapsto & G \times G \circlearrowright T^*G & =: M_{\square} \\ & \circlearrowleft & \longmapsto & G \circlearrowright G \times \mathcal{S} & =: M_{\circlearrowleft} \\ & \ominus & \longmapsto & \{(g,\xi) \in G \times \mathcal{S} : \operatorname{Ad}_g^* \xi = \xi\} & =: M_{\ominus} \end{array}$$

G complex semisimple, $\mathcal{S}\subset\mathfrak{g}^*_{\mathrm{reg}}$ Kostant slice

Three Hamiltonian spaces:

$$\begin{array}{cccc} & \longmapsto & G \times G \circlearrowleft T^*G & =: M_{\square \square} \\ & \circlearrowleft & \longmapsto & G \circlearrowleft G \times \mathcal{S} & =: M_{\circlearrowleft} \\ & \boxminus & \longmapsto & \{(g,\xi) \in G \times \mathcal{S} : \operatorname{Ad}_g^* \xi = \xi\} & =: M_{\varTheta} \end{array}$$

G complex semisimple, $\mathcal{S}\subset \mathfrak{g}^*_{\mathrm{reg}}$ Kostant slice

Three Hamiltonian spaces:

$$\begin{array}{cccc} & \longmapsto & G \times G \circlearrowright T^*G & =: M_{\square} \\ & \circlearrowleft & \longmapsto & G \circlearrowright G \times \mathcal{S} & =: M_{\oplus} \\ & \ominus & \longmapsto & \{(g,\xi) \in G \times \mathcal{S} : \operatorname{Ad}_q^* \xi = \xi\} & =: M_{\ominus} \end{array}$$

$$(M_{\oplus} \times M_{\oplus}) /\!\!/ G \cong M_{\ominus} \qquad (M_{\oplus} \times M_{\bigcirc}) /\!\!/ G \cong M_{\oplus}$$

Conjecture (Moore-Tachikawa 2011). This extends to a functor (TQFT)

Conjecture (Moore-racinkawa 2011). This extends to a functor (TQLT)

Objects: unions of circles

Morphisms: surfaces

Composition: gluing

 η_G : 2-dim cobordisms

Objects: complex semisimple groups

 $\underline{\mathsf{Morphisms}}\colon\thinspace G\overset{M}{\to} H$

Hamiltonian spaces

 \overline{M} Hamiltionian G imes H-space

 $\frac{\text{Composition: } G \stackrel{M}{\rightarrow} H \stackrel{N}{\rightarrow} I}{N \circ M := (M \times N) /\!\!/ H}$

Examples.

$$\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

Examples.

$$\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\eta_{\mathrm{SL}(3,\mathbb{C})}\left(\right) = \overline{\mathcal{O}_{\min}(E_6)}$$

Examples.

$$\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\bigcirc\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\eta_{\mathrm{SL}(3,\mathbb{C})}\left(\bigcirc\right) = \overline{\mathcal{O}_{\mathrm{min}}(E_6)}$$
?

Examples.

$$\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2$$

$$\eta_{\mathrm{SL}(3,\mathbb{C})}\left(\right) = \overline{\mathcal{O}_{\min}(E_6)}$$
?

Partial solutions.

- Braverman–Finkelberg–Nakajima: $G = \mathrm{SL}(n,\mathbb{C})$ (Coulomb branches)
- Ginzburg-Kazhdan: scheme version (ad hoc construction)
 - 2-dim cobordisms --> Hamiltonian schemes
- Bielawski : regular version $(M \stackrel{\mu}{\to} \mathfrak{g}^*_{\mathrm{reg}})$

 $Generalization \ of \ manifolds, \ good \ for \ working \ with \ singular \ quotients.$

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \to M_1) \sim (G_2 \times M_2 \to M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \to M_1) \sim (G_2 \times M_2 \to M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\mathrm{s}}{\underset{\mathrm{t}}{\Longrightarrow}} M$, gh defined iff $\mathrm{s}(g) = \mathrm{t}(h)$. $x \stackrel{h}{\longrightarrow} y \stackrel{g}{\longrightarrow} z$

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \to M_1) \sim (G_2 \times M_2 \to M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\text{s}}{\Rightarrow} M$, gh defined iff s(g) = t(h). $x \stackrel{h}{\longrightarrow} y \stackrel{g}{\longrightarrow} z$

 $x \Longrightarrow y$

A groupoid on ${\cal M}$ is like an equivalence relation on ${\cal M}$ but with more than one ways to identify two points.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \to M)$. What would be a natural equivalence relation \sim on this set such that if

$$(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\text{s}}{\rightrightarrows} M$, gh defined iff s(g) = t(h). $x \stackrel{h}{\longrightarrow} y \stackrel{g}{\longrightarrow} z$

 $x \longrightarrow y$ A groupoid on M is like an equivalence relation on M but with more than one ways to identify two points.

Example. $\mathcal{G} = G \times M \rightrightarrows M, \ x \xrightarrow{(g,x)} g \cdot x$

Two Lie groupoids \mathcal{G}_1 and \mathcal{G}_2 are Morita equivalent, denoted $\mathcal{G}_1 \sim \mathcal{G}_2$, if

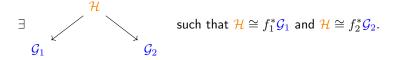


such that $\mathcal{H} \cong f_1^* \mathcal{G}_1$ and $\mathcal{H} \cong f_2^* \mathcal{G}_2$.

Two Lie groupoids \mathcal{G}_1 and \mathcal{G}_2 are Morita equivalent, denoted $\mathcal{G}_1 \sim \mathcal{G}_2$, if

The stack associated to a Lie groupoid $\mathcal{G} \rightrightarrows M$ is its Morita equivalence class.

Two Lie groupoids \mathcal{G}_1 and \mathcal{G}_2 are Morita equivalent, denoted $\mathcal{G}_1 \sim \mathcal{G}_2$, if



The stack associated to a Lie groupoid $\mathcal{G}
ightharpoons M$ is its Morita equivalence class.

Summary. We replace singular quotients by equivalence classes of manifolds with Lie group actions, or more generally, Lie groupoids.

The "tangent bundle" of a stack $[\mathcal{G}
ightharpoonup M]$

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$ is the Lie algebroid $\operatorname{Lie}(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$ is the Lie algebroid $\operatorname{Lie}(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$?

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$ is the Lie algebroid

$$\mathbf{Lie}(\mathcal{G}) \longrightarrow TM$$
 (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold ${\cal N}$ is an

isomorphism $TN \cong T^*N$.

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$ is the Lie algebroid

$$\mathbf{Lie}(\mathcal{G}) \longrightarrow TM$$
 (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism $TN \cong T^*N$.

A "symplectic form" on a stack $[\mathcal{G}
ightrightarrows M]$ is a

quasi-isomorphism $(\operatorname{Lie}(\mathcal{G}) \longrightarrow TM) \simeq (T^*M \longrightarrow \operatorname{Lie}(\mathcal{G})^*).$

The "tangent bundle" of a stack $[\mathcal{G}
ightharpoonup M]$ is the Lie algebroid

$$\operatorname{Lie}(\mathcal{G}) \longrightarrow TM$$
 (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism
$$TN \cong T^*N$$
.

A "symplectic form" on a stack $[\mathcal{G}
ightrightarrows M]$ is a

$$\textit{quasi-isomorphism} \quad \big(\mathrm{Lie}(\mathcal{G}) \longrightarrow TM\big) \simeq \big(T^*M \longrightarrow \mathrm{Lie}(\mathcal{G})^*\big).$$

How should we align them?

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$ is the Lie algebroid

$$\mathbf{Lie}(\mathcal{G}) \longrightarrow TM$$
 (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism
$$TN \cong T^*N$$
.

A "symplectic form" on a stack $[\mathcal{G}
ightrightarrows M]$ is a

quasi-isomorphism
$$(\operatorname{Lie}(\mathcal{G}) \longrightarrow TM) \simeq (T^*M \longrightarrow \operatorname{Lie}(\mathcal{G})^*).$$

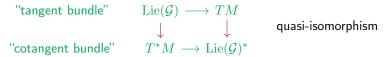
How should we align them? Three ways!

$\operatorname{Lie}(\mathcal{G}) \longrightarrow TM$	$Lie(\mathcal{G}) \longrightarrow TM$	$\operatorname{Lie}(\mathcal{G}) \longrightarrow TM$
\	↓ ↓	↓
$T^*M \to \mathrm{Lie}(\mathcal{G})^*$	$T^*M \longrightarrow \mathrm{Lie}(\mathcal{G})^*$	$T^*M \to \mathrm{Lie}(\mathcal{G})^*$
0-shifted symplectic	1-shifted symplectic	2-shifted symplectic
symplectic geometry		

1-shifted symplectic stack.

$$\begin{array}{ll} \mathcal{G} & \omega \in \Omega^2_{\mathcal{G}} \\ \downarrow \downarrow & \\ M & \phi \in \Omega^3_M \end{array}$$

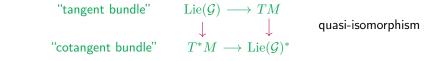
satisfying a compatibility condition ($d\omega={\bf s}^*\phi-{\bf t}^*\phi)$ and a non-degeneracy condition



1-shifted symplectic stack.

$$\begin{array}{ll} \mathcal{G} & \omega \in \Omega^2_{\mathcal{G}} \\ \downarrow \downarrow & \\ M & \phi \in \Omega^3_M \end{array}$$

satisfying a compatibility condition ($d\omega={\sf s}^*\phi-{\sf t}^*\phi$) and a non-degeneracy condition

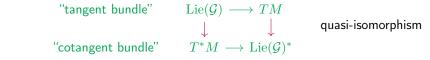


This is exactly the notion of *quasi-symplectic groupoids* of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

1-shifted symplectic stack.

$$\begin{array}{ccc}
\mathcal{G} & \omega \in \Omega \\
\downarrow \downarrow & \\
M & \phi \in \Omega^{2}
\end{array}$$

satisfying a compatibility condition ($d\omega={\sf s}^*\phi-{\sf t}^*\phi$) and a non-degeneracy condition



This is exactly the notion of *quasi-symplectic groupoids* of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

Includes symplectic groupoids, i.e. integrations of Poisson manifolds.

1-shifted symplectic stack.

$$\begin{array}{ccc}
\mathcal{G} & \omega \in \Omega \\
\downarrow \downarrow \\
M & \phi \in \Omega
\end{array}$$

satisfying a compatibility condition ($d\omega={\sf s}^*\phi-{\sf t}^*\phi$) and a non-degeneracy condition

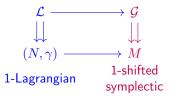
$$\begin{array}{ccc} \text{``tangent bundle''} & \operatorname{Lie}(\mathcal{G}) \longrightarrow TM \\ & \downarrow & \text{quasi-isomorphism} \\ \text{``cotangent bundle''} & T^*M \longrightarrow \operatorname{Lie}(\mathcal{G})^* \end{array}$$

This is exactly the notion of *quasi-symplectic groupoids* of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

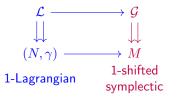
Includes symplectic groupoids, i.e. integrations of Poisson manifolds.

Example. G Lie group, $\mathfrak{g} := \operatorname{Lie}(G)$.

$$\begin{array}{cc} T^*G & \omega = \text{canonical} \\ \downarrow \downarrow & \\ \mathfrak{g}^* & \phi = 0 \end{array}$$

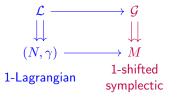


where $\gamma\in\Omega^2_N$ satisfies some compatibility and non-degeneracy conditions.



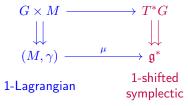
where $\gamma\in\Omega^2_N$ satisfies some compatibility and non-degeneracy conditions.

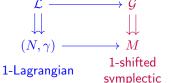
Example. $(M, \gamma) \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$ Hamiltonian G-space.



where $\gamma\in\Omega^2_N$ satisfies some compatibility and non-degeneracy conditions.

Example. $(M,\gamma) \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$ Hamiltonian G-space.



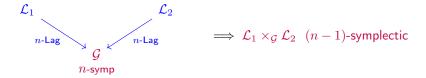


where $\gamma\in\Omega^2_N$ satisfies some compatibility and non-degeneracy conditions.

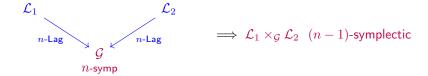
Example. $(M, \gamma) \xrightarrow{\mu} \mathfrak{g}^*$ Hamiltonian G-space.

Hamiltonian spaces are 1-shifted Lagrangians!

Theorem (Pantev-Toën-Vaquié-Vezzosi 2012).

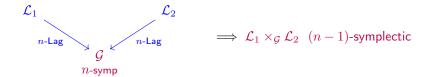


Theorem (Pantev-Toën-Vaquié-Vezzosi 2012).



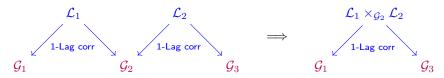
Example. $M \to \mathfrak{g}^*$ Hamiltonian G-space.

Theorem (Pantev-Toën-Vaquié-Vezzosi 2012).

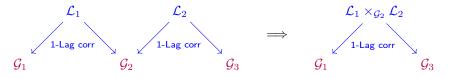


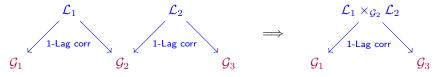
Example. $M \to \mathfrak{g}^*$ Hamiltonian G-space.

Symplectic reduction is a 1-shifted Lagrangian intersection!



→ 1-shifted Weinstein symplectic "category"



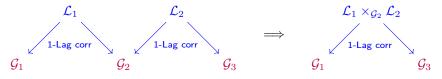


→ 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

 $\textbf{Moore-Tachikawa conjecture.} \ \, \textbf{Every complex semisimple group} \ \, G \ \, \textbf{induces a TQFT}$

 $\eta_G:$ 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G \overset{M}{\to} H: M$ Hamil. $G \times H$ -space $G \overset{M}{\to} H \overset{N}{\to} I, \quad N \circ M \coloneqq (M \times N) /\!\!/ H$



→ 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim-Woodward trick or derived fibre products)

 ${\bf Moore-Tachikawa\ conjecture.}\ \ {\bf Every\ complex\ semisimple\ group\ }{\it G\ induces\ a\ TQFT}$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians!

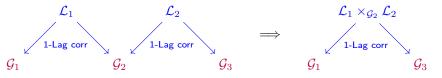


→ 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim-Woodward trick or derived fibre products)

 $\textbf{Moore-Tachikawa conjecture.} \ \, \textbf{Every complex semisimple group} \ \, G \ \, \textbf{induces a TQFT}$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians! (Calaque 2015)



→ 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim-Woodward trick or derived fibre products)

 $\textbf{Moore-Tachikawa conjecture.} \ \ \text{Every complex semisimple group} \ G \ \text{induces a TQFT}$

$$\eta_G:$$
 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G \overset{M}{\to} H: M$ Hamil. $G \times H$ -space $G \overset{M}{\to} H \overset{N}{\to} I, \quad N \circ M \coloneqq (M \times N) /\!\!/ H$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians! (Calaque 2015)

2-dim cobordisms \longrightarrow 1-shifted Weinstein symplectic category

A 2d TQFT is a symmetric monoidal functor $\mathbf{Cob}_2 \longrightarrow \mathbf{C}$ for some symmetric monoidal category (\mathbf{C}, \otimes, I) .

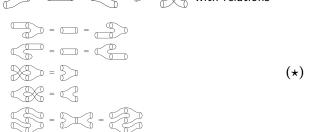
A 2d TQFT is a symmetric monoidal functor $\mathbf{Cob}_2 \longrightarrow \mathbf{C}$ for some symmetric monoidal category (\mathbf{C}, \otimes, I) .

 Cob_2 is generated on **objects** by \bigcirc

A 2d TQFT is a symmetric monoidal functor $\mathbf{Cob}_2 \longrightarrow \mathbf{C}$ for some symmetric monoidal category (\mathbf{C}, \otimes, I) .

 $\operatorname{\mathbf{Cob}}_2$ is generated on **objects** by \bigcirc

and on morphisms by \bigcirc \bigcirc \bigcirc \bigcirc with relations



A 2d TQFT is a symmetric monoidal functor $Cob_2 \longrightarrow C$ for some symmetric monoidal category (C, \otimes, I) .

 $\operatorname{\mathbf{Cob}}_2$ is generated on **objects** by \bigcirc

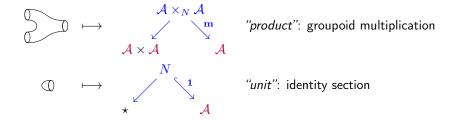
and on **morphisms** by \odot \bigcirc \bigcirc \bigcirc with relations

It suffices to specify an object $X \in \mathbf{C}$ $(\bigcirc \mapsto X, \bigcirc \bigcirc \mapsto X \otimes X, \ldots)$ and morphisms

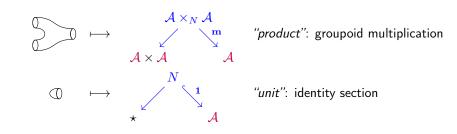
satisfying analogues of (\star) , i.e. X is a *commutative Frobenius object* in (\mathbf{C}, \otimes, I) .

Theorem (Crooks–M.). Any *abelian* Lie groupoid $\mathcal{A} \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a *commutative Frobenius object* in the *1-shifted Weinstein symplectic category*.

Theorem (Crooks–M.). Any **abelian** Lie groupoid $A \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a **commutative Frobenius object** in the **1-shifted Weinstein symplectic category**.



Theorem (Crooks–M.). Any **abelian** Lie groupoid $A \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a **commutative Frobenius object** in the **1-shifted Weinstein symplectic category**.



Corollary. Every quasi-symplectic groupoid $\mathcal G$ *Morita equivalent* to an abelian Lie groupoid induces a TQFT

 $\eta_{\mathcal{G}}: \mathbf{Cob}_2 \longrightarrow \mathbf{1}$ -shifted Weinstein symplectic category

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} \coloneqq \operatorname{Lie}(G)$.

- (1) \exists global slice $\mathcal{S} \subset \mathfrak{g}^*_{\mathrm{reg}}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}_{reg}^*$
- (3) $\mathfrak{g}_{\mathrm{reg}}^*$ is *Hartogs* : $\mathbb{C}[\mathfrak{g}_{\mathrm{reg}}^*] = \mathbb{C}[\mathfrak{g}^*]$

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} \coloneqq \operatorname{Lie}(G)$.

- (1) \exists global slice $\mathcal{S} \subset \mathfrak{g}^*_{\mathrm{reg}}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}_{\mathrm{reg}}^*$
- (3) \mathfrak{g}_{reg}^* is $Hartogs: \mathbb{C}[\mathfrak{g}_{reg}^*] = \mathbb{C}[\mathfrak{g}^*]$
- (1) & (2) $\implies T^*G|_{\mathfrak{g}^*_{\mathrm{reg}}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} \coloneqq \operatorname{Lie}(G)$.

- (1) \exists global slice $\mathcal{S} \subset \mathfrak{g}^*_{\text{reg}}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}_{\mathrm{reg}}^*$
- (3) $\mathfrak{g}_{\mathrm{reg}}^*$ is $\mathit{Hartogs}: \mathbb{C}[\mathfrak{g}_{\mathrm{reg}}^*] = \mathbb{C}[\mathfrak{g}^*]$
- (1) & (2) $\Longrightarrow T^*G|_{\mathfrak{g}_{reg}^*}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \Longrightarrow regular version of Moore–Tachikawa conjecture $(M \stackrel{\mu}{\to} \mathfrak{g}_{reg}^*)$ (recovers results of Ginzburg–Kazhdan and Bielawski)

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g}\coloneqq \mathrm{Lie}(G).$

- (1) \exists global slice $S \subset \mathfrak{g}^*_{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are *abelian* for all $\xi \in \mathfrak{g}^*_{\mathrm{reg}}$
- (3) $\mathfrak{g}_{\mathrm{reg}}^*$ is $\mathit{Hartogs}: \mathbb{C}[\mathfrak{g}_{\mathrm{reg}}^*] = \mathbb{C}[\mathfrak{g}^*]$
- (1) & (2) $\Longrightarrow T^*G|_{\mathfrak{g}_{reg}^*}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \Longrightarrow regular version of Moore–Tachikawa conjecture $(M \stackrel{\mu}{\to} \mathfrak{g}_{reg}^*)$ (recovers results of Ginzburg–Kazhdan and Bielawski)

Theorem (Crooks–M.) There is a functor
1-shifted Weinstein symplectic category → Hamiltonian schemes

$$\mathcal{G}_1 \xrightarrow{\mathcal{L}} \mathcal{G}_2 \longrightarrow \operatorname{Spec} \mathbb{C}[\mathcal{G}_1 \times_{M_1} N \times_{M_2} \mathcal{G}_2]^{\mathcal{L}}$$

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \operatorname{Lie}(G)$.

- (1) \exists global slice $S \subset \mathfrak{g}_{reg}^*$ for the coadjoint action (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}_{re\sigma}^*$
- (3) \mathfrak{g}_{reg}^* is $Hartogs: \mathbb{C}[\mathfrak{g}_{reg}^*] = \mathbb{C}[\mathfrak{g}^*]$
- (1) & (2) $\implies T^*G|_{\mathfrak{g}^*_{\rm reg}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \Longrightarrow regular version of Moore–Tachikawa conjecture ($M \stackrel{\mu}{\to} \mathfrak{g}_{re\sigma}^*$) (recovers results of Ginzburg-Kazhdan and Bielawski)

Theorem (Crooks-M.) There is a functor 1-shifted Weinstein symplectic category --> Hamiltonian schemes $\longrightarrow \operatorname{Spec} \mathbb{C}[\mathcal{G}_1 \times_{M_1} N \times_{M_2} \mathcal{G}_2]^{\mathcal{L}}$

 $(3) \implies \text{the composition}$

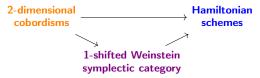
 $Cob_2 \longrightarrow 1$ -shifted Weinstein symplectic \longrightarrow Hamiltonian schemes solves the scheme version of the Moore-Tachikawa conjecture.

 \bullet Let $M\subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.

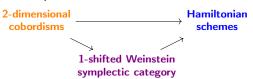
- \bullet Let $M\subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- \bullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M.$

- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoons M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) M_{reg} is Hartogs

- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoons M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $\mathcal{S} \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) M_{reg} is Hartogs

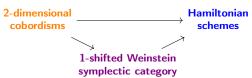


- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) $M_{\rm reg}$ is Hartogs



Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture

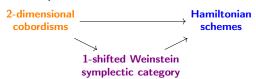
- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoons M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) $M_{\rm reg}$ is Hartogs



Example. $M=\mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture Further questions.

• What are examples other than duals of complex semisimple Lie algebras?

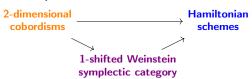
- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoons M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) $M_{\rm reg}$ is Hartogs



Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
 - Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)

- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoons M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
 - (3) $M_{\rm reg}$ is Hartogs



Example. $M=\mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
 - Here's one: $\mathfrak{g}=\mathfrak{sl}_2\ltimes\mathbb{C}^2$ (5-dimensional non-reductive)
 - Non-affine but regular Poisson varieties also work, e.g. ${\cal M}=$ Grothendieck–Springer resolution

- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoonup M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
- (3) $M_{\rm reg}$ is Hartogs Then this determines a TQFT

2-dimensional cobordisms

1-shifted Weinstein symplectic category

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
 - Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)
 - Non-affine but regular Poisson varieties also work, e.g. $M={\sf Grothendieck-Springer}$ resolution
- When are these schemes varieties? (True for \mathfrak{sl}_n)

- Let $M \subset \mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- ullet Suppose that it integrates to an affine symplectic groupoid $\mathcal{G}
 ightharpoonup M.$
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
 - (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
 - (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
- (3) $M_{\rm reg}$ is Hartogs Then this determines a TQFT

2-dimensional cobordisms

1-shifted Weinstein symplectic category

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore–Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
 - Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)
 - Non-affine but regular Poisson varieties also work, e.g. M = Grothendieck-Springer resolution
- When are these schemes varieties? (True for \mathfrak{sl}_n)

thank you