The Moore–Tachikawa conjecture via shifted symplectic geometry

Maxence Mayrand

University of Sherbrooke

July 15, 2024

Joint work with Peter Crooks

Overview 1/14

Theorem (Kostant 1963). Let G be a complex semisimple group, $\mathfrak{g} \coloneqq \mathrm{Lie}(G)$.

(1) ∃ ${\scriptstyle\cal B}$ lobal slice ${\mathcal S} \subset {\mathfrak g}^*_{\rm reg}$ for the coadjoint action

(2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$

(3) $\mathfrak{g}^*_{\text{reg}}$ is *Hartogs* : holomorphic functions on $\mathfrak{g}^*_{\text{reg}}$ extend to \mathfrak{g}^*

Overview 1/14

Theorem (Kostant 1963). Let G be a complex semisimple group, $g := \text{Lie}(G)$. (1) ∃ ${\scriptstyle\cal B}$ lobal slice ${\mathcal S} \subset {\mathfrak g}^*_{\rm reg}$ for the coadjoint action (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$ (3) $\mathfrak{g}^*_{\text{reg}}$ is *Hartogs* : holomorphic functions on $\mathfrak{g}^*_{\text{reg}}$ extend to \mathfrak{g}^*

Upshot of the talk.

Any not necessarily semisimple Lie algebra satisfying $(1)-(3)$, or, more generally, Poisson affine variety satisfying analogues of (1) – (3) , defines a Topological Quantum Field Theory valued in Hamiltonian spaces.

The case g complex semisimple is part of the Moore–Tachikawa conjecture.

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

 $G\times G\circlearrowright T^*G$

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

$$
G\times G\circlearrowright T^*G=G\times \mathfrak{g}^*\\ G\circlearrowright G\times \mathcal{S}
$$

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

$$
G \times G \circlearrowright T^*G = G \times \mathfrak{g}^*
$$

\n
$$
G \circlearrowright G \times S
$$

\n
$$
\{(g,\xi) \in G \times S : \mathrm{Ad}_g^* \xi = \xi\}
$$

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

Ï

$$
\begin{array}{ccc}\n\Box \Box & \longrightarrow & G \times G \circlearrowright T^*G & =: M_{\Box \Box} \\
\Box \Box & \longrightarrow & G \circlearrowright G \times \mathcal{S} & =: M_{\Box} \\
\quad \ominus & \longrightarrow & \{(g, \xi) \in G \times \mathcal{S} : \mathrm{Ad}_g^* \xi = \xi\} & =: M_{\Theta}\n\end{array}
$$

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

> $\overline{\bigcirc}$ \Box \longmapsto $G \times G \circ T^*G$ $\begin{aligned} &=: M_\text{\textnormal{CD}} \\ &=: M_\text{\textnormal{d}} \\ \end{aligned}$ \mapsto $G \circlearrowright G \times S$ =: M \longleftrightarrow { $(g, \xi) \in G \times S : \mathrm{Ad}^*_g \xi = \xi$ } =: M

$$
\begin{array}{ccc} \mathbb{O} \mathbb{D} \cong \oplus & & \mathbb{O} \square \cong \mathbb{O} \\ (M_{\Phi} \times M_{\Phi})/\!\!/ G \cong M_{\Theta} & & (M_{\Phi} \times M_{\overline{\Box}})/\!\!/ G \cong M_{\Phi} \end{array}
$$

 G complex semisimple, $\mathcal{S} \subset \mathfrak{g}^*_\mathrm{reg}$ Kostant slice Three Hamiltonian spaces:

> $\longrightarrow G \times G \circ T^*G$ $=: M_{\bigoplus}$
=: M_{\bigoplus} \mapsto $G \circlearrowright G \times S$ =: M \longleftrightarrow { $(g, \xi) \in G \times S : \text{Ad}^*_q$ $g^*\xi = \xi$ } =: M

∼= ∼= $(M_{\odot} \times M_{\odot})/G \cong M_{\odot}$ $(M_{\odot} \times M_{\odot})/G \cong M_{\odot}$

Conjecture (Moore–Tachikawa 2011). This extends to a functor (TQFT)

 η_G : 2-dim cobordisms \longrightarrow Hamiltonian spaces Morphisms: surfaces \int_{0}^{8}

Composition: gluing

Objects: unions of circles Objects: complex semisimple groups $\stackrel{M}{\to} H$ M Hamiltionian $G \times H$ -space $\stackrel{M}{\to} H \stackrel{N}{\to} I$ $N \circ M \coloneqq (M \times N) / H$

It suffices to construct $\eta_G\left(\sum\limits_{i=1}^m\right)$ and verify a finite number of relations such as

$$
\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i
$$

It suffices to construct $\eta_G\left(\sum\limits_{i=1}^m\right)$ and verify a finite number of relations such as

$$
\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i
$$

Examples.

$$
\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\sum\hspace{-3.5mm}\sum\hspace{-3.5mm}\mathbb{D}\right)=\mathbb{C}^2\otimes\mathbb{C}^2\otimes\mathbb{C}^2
$$

It suffices to construct $\eta_G\left(\sum\limits_{i=1}^m\right)$ and verify a finite number of relations such as

$$
\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i
$$

Examples.

$$
\eta_{\mathrm{SL}(2,\mathbb{C})} \left(\sum_{\mathcal{D}} \Phi \right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2
$$

$$
\eta_{\mathrm{SL}(3,\mathbb{C})} \left(\sum_{\mathcal{D}} \Phi \right) = \overline{\mathcal{O}_{\mathrm{min}}(E_6)}
$$

It suffices to construct $\eta_G\left(\sum\limits_{i=1}^m\right)$ and verify a finite number of relations such as

$$
\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i
$$

Examples.

$$
\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\sum_{\mathbb{C}}\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2
$$

$$
\eta_{\mathrm{SL}(3,\mathbb{C})}\left(\sum_{\mathbb{C}}\right) = \overline{\mathcal{O}_{\mathrm{min}}(E_6)}
$$

It suffices to construct $\eta_G\left(\sum\limits_{i=1}^m\right)$ and verify a finite number of relations such as

$$
\sum_{i=1}^{n} \alpha_i = \sum_{i=1}^{n} \alpha_i
$$

Examples.

$$
\eta_{\mathrm{SL}(2,\mathbb{C})}\left(\sum_{\mathbb{C}}\right) = \mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \mathbb{C}^2
$$

$$
\eta_{\mathrm{SL}(3,\mathbb{C})}\left(\sum_{\mathbb{C}}\right) = \overline{\mathcal{O}_{\mathrm{min}}(E_6)}
$$

Partial solutions.

- Braverman–Finkelberg–Nakajima: $G = SL(n, \mathbb{C})$ (Coulomb branches)
- Ginzburg–Kazhdan: scheme version (ad hoc construction)

2-dim cobordisms \rightarrow Hamiltonian schemes

- Bielawski : regular version
$$
(M \stackrel{\mu}{\rightarrow} \mathfrak{g}^*_{\mathrm{reg}})
$$

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\mathsf{s}}{\rightrightarrows}$ $\frac{1}{x} M$, gh defined iff $s(g) = t(h)$. $x \xrightarrow{h} y \xrightarrow{g} z$

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\mathsf{s}}{\rightrightarrows}$ $\frac{1}{x} M$, gh defined iff $s(g) = t(h)$. $x \xrightarrow{h} y \xrightarrow{g} z$

 $x \longrightarrow y$

A groupoid on M is like an equivalence relation on M but with more than one ways to identify two points.

Basic idea. Consider the set of manifolds with Lie group actions $(G \times M \rightarrow M)$. What would be a natural equivalence relation \sim on this set such that if

 $(G_1 \times M_1 \rightarrow M_1) \sim (G_2 \times M_2 \rightarrow M_2)$

then $M_1/G_1 \cong M_2/G_2$, $H_{G_1}^*(M_1) \cong H_{G_2}^*(M_2)$, etc?

e.g. $(G \times M \to M) \sim (* \times M/G \to M/G)$ for a free and proper action.

The **stack** of $G \times M \to M$ will be its equivalence class $[G \times M \to M]$.

Lie groupoids. $\mathcal{G} \stackrel{\mathsf{s}}{\rightrightarrows}$ $\frac{1}{x} M$, gh defined iff $s(g) = t(h)$. $x \xrightarrow{h} y \xrightarrow{g} z$

A groupoid on M is like an equivalence relation on M but with more than one ways to identify two points.

Example. $\mathcal{G} = G \times M \rightrightarrows M$, $x \xrightarrow{(g,x)} g \cdot x$

Two Lie groupoids G_1 and G_2 are Morita equivalent, denoted $G_1 \sim G_2$, if

Two Lie groupoids \mathcal{G}_1 and \mathcal{G}_2 are Morita equivalent, denoted $\mathcal{G}_1 \sim \mathcal{G}_2$, if

The **stack** associated to a Lie groupoid $G \rightrightarrows M$ is its Morita equivalence class.

Two Lie groupoids G_1 and G_2 are Morita equivalent, denoted $G_1 \sim G_2$, if

The **stack** associated to a Lie groupoid $\mathcal{G} \rightrightarrows M$ is its Morita equivalence class.

Summary. We replace singular quotients by equivalence classes of manifolds with Lie group actions, or more generally, Lie groupoids.

The "tangent bundle" of a stack $[\mathcal{G} \rightrightarrows M]$

 $Lie(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

 $Lie(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "*symplectic form*" on a stack $[\mathcal{G} \rightrightarrows M]$?

Lie(\mathcal{G}) $\longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "*symplectic form*" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism $TN \cong T^*N$.

 $Lie(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "*symplectic form*" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism $TN \cong T^*N$.

A "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$ is a

quasi-isomorphism $(\text{Lie}(\mathcal{G}) \longrightarrow TM) \simeq (T^*M \longrightarrow \text{Lie}(\mathcal{G})^*).$

 $Lie(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "*symplectic form*" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism $TN \cong T^*N$.

A "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$ is a

quasi-isomorphism $(\text{Lie}(\mathcal{G}) \longrightarrow TM) \simeq (T^*M \longrightarrow \text{Lie}(\mathcal{G})^*).$

How should we align them?

 $Lie(\mathcal{G}) \longrightarrow TM$ (vector bundles over M)

up to *quasi-isomorphisms* of 2-term complexes.

Question. What is a "*symplectic form*" on a stack $[\mathcal{G} \rightrightarrows M]$?

A symplectic form on a manifold N is an

isomorphism $TN \cong T^*N$.

A "symplectic form" on a stack $[\mathcal{G} \rightrightarrows M]$ is a

quasi-isomorphism $(\text{Lie}(\mathcal{G}) \longrightarrow TM) \simeq (T^*M \longrightarrow \text{Lie}(\mathcal{G})^*).$

How should we align them? Three ways!

Shifted symplectic geometry 7/14

1-shifted symplectic stack.

$$
\begin{array}{ll}\nG & \omega \in \Omega_G^2 \\
\downarrow \downarrow & \\
M & \phi \in \Omega_M^3\n\end{array}
$$

satisfying a compatibility condition $(d\omega = \mathsf{s}^*\phi - \mathsf{t}^*\phi)$ and a non-degeneracy condition

Shifted symplectic geometry *Shifted Symplectic geometry*

1-shifted symplectic stack.

$$
\begin{array}{ll}\nG & \omega \in \Omega_G^2 \\
\downarrow \downarrow & \\
M & \phi \in \Omega_M^3\n\end{array}
$$

satisfying a compatibility condition $(d\omega = \mathsf{s}^*\phi - \mathsf{t}^*\phi)$ and a non-degeneracy condition

This is exactly the notion of **quasi-symplectic groupoids** of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).
Shifted symplectic geometry *Shifted Symplectic geometry*

1-shifted symplectic stack.

$$
\begin{array}{ll}\nG & \omega \in \Omega_G^2 \\
\downarrow \downarrow & \\
M & \phi \in \Omega_M^3\n\end{array}
$$

satisfying a compatibility condition $(d\omega = \mathsf{s}^*\phi - \mathsf{t}^*\phi)$ and a non-degeneracy condition

This is exactly the notion of **quasi-symplectic groupoids** of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

Includes symplectic groupoids, i.e. integrations of Poisson manifolds.

Shifted symplectic geometry *Shifted Symplectic geometry*

1-shifted symplectic stack.

$$
\begin{array}{ll}\nG & \omega \in \Omega_G^2 \\
\downarrow \downarrow & \\
M & \phi \in \Omega_M^3\n\end{array}
$$

satisfying a compatibility condition $(d\omega = \mathsf{s}^*\phi - \mathsf{t}^*\phi)$ and a non-degeneracy condition

This is exactly the notion of **quasi-symplectic groupoids** of Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

Includes symplectic groupoids, i.e. integrations of Poisson manifolds.

Example. G Lie group, $\mathfrak{a} \coloneqq \text{Lie}(G)$.

$$
T^*G \qquad \omega = \text{canonical}
$$

$$
\downarrow \downarrow
$$

$$
\mathfrak{g}^* \qquad \phi = 0
$$

where $\gamma \in \Omega_N^2$ satisfies some compatibility and non-degeneracy conditions.

where $\gamma \in \Omega_N^2$ satisfies some compatibility and non-degeneracy conditions.

Example. $(M, \gamma) \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$ Hamiltonian *G*-space.

where $\gamma \in \Omega_N^2$ satisfies some compatibility and non-degeneracy conditions.

Example. $(M, \gamma) \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$ Hamiltonian *G*-space.

where $\gamma \in \Omega_N^2$ satisfies some compatibility and non-degeneracy conditions.

Example. $(M, \gamma) \stackrel{\mu}{\longrightarrow} \mathfrak{g}^*$ Hamiltonian *G*-space.

Hamiltonian spaces are 1-shifted Lagrangians!

Shifted symplectic geometry and the state of $\frac{9}{14}$

Theorem (Pantev–Toën–Vaquié–Vezzosi 2012).

 $n-\text{Lag}$ \longrightarrow $\mathcal{L}_1 \times_{\mathcal{G}} \mathcal{L}_2$ $(n-1)$ -symplectic

Shifted symplectic geometry 1991 and 1

Theorem (Pantev–Toën–Vaquié–Vezzosi 2012).

Example. $M \to \mathfrak{g}^*$ Hamiltonian G-space.

Shifted symplectic geometry and the state of $\frac{9}{14}$

Theorem (Pantev–Toën–Vaquié–Vezzosi 2012).

Example. $M \to \mathfrak{g}^*$ Hamiltonian G-space.

Symplectic reduction is a 1-shifted Lagrangian intersection!

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

Moore–Tachikawa conjecture. Every complex semisimple group G induces a TQFT

 η_G : 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G\overset{M}{\to}H:M$ Hamil. $G\times H$ -space $G\stackrel{M}{\rightarrow}H\stackrel{N}{\rightarrow}I,\quad N\circ M\coloneqq (M\times N)\mathord{/\!\!/} H$

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

Moore–Tachikawa conjecture. Every complex semisimple group G induces a TQFT

 η_G : 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G\overset{M}{\to}H:M$ Hamil. $G\times H$ -space $G\stackrel{M}{\rightarrow}H\stackrel{N}{\rightarrow}I,\quad N\circ M\coloneqq (M\times N)\mathord{/\!\!/} H$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians!

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

Moore–Tachikawa conjecture. Every complex semisimple group G induces a TQFT

 η_G : 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G\overset{M}{\to}H:M$ Hamil. $G\times H$ -space $G\stackrel{M}{\rightarrow}H\stackrel{N}{\rightarrow}I,\quad N\circ M\coloneqq (M\times N)\mathord{/\!\!/} H$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians! (Calaque 2015)

1-shifted Lagrangian correspondences. $\mathcal{L} \rightarrow \mathcal{G}_1 \times \mathcal{G}_2^-$

 \rightsquigarrow 1-shifted Weinstein symplectic "category"

Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

Moore–Tachikawa conjecture. Every complex semisimple group G induces a TQFT

 η_G : 2-dim cobordisms \longrightarrow Hamiltonian spaces Objects: complex semisimple groups Morphisms: $G\overset{M}{\to}H:M$ Hamil. $G\times H$ -space $G\stackrel{M}{\rightarrow}H\stackrel{N}{\rightarrow}I,\quad N\circ M\coloneqq (M\times N)\mathord{/\!\!/} H$

Composition in the category of Hamiltonian spaces is intersection of 1-shifted Lagrangians! (Calaque 2015)

2-dim cobordisms \longrightarrow 1-shifted Weinstein symplectic category

A 2d TQFT is a symmetric monoidal functor $\text{Cob}_2 \longrightarrow \text{C}$ for some symmetric monoidal category (C, \otimes, I) .

A 2d TQFT is a symmetric monoidal functor $\text{Cob}_2 \longrightarrow \text{C}$ for some symmetric monoidal category (C, \otimes, I) .

 Cob_2 is generated on **objects** by \bigcirc

Commutative Frobenius objects 11/14

A 2d TQFT is a symmetric monoidal functor $Cob_2 \rightarrow C$ for some symmetric monoidal category (C, \otimes, I) .

A 2d TQFT is a symmetric monoidal functor $Cob_2 \rightarrow C$ for some symmetric monoidal category (C, \otimes, I) .

It suffices to specify an object $X \in \mathbf{C}$ ($\bigcirc \mapsto X$, $\bigcirc \bigcirc \mapsto X \otimes X$, ...) and morphisms

$$
\begin{array}{ccl}\n\mathfrak{0} & \longrightarrow & (I \to X) & \text{``unit''} \\
\searrow & & (X \otimes X \to X) & \text{``product''} \\
\searrow & & (X \to X \otimes X) & \text{``co-product''} \\
\mathfrak{0} & \longmapsto & (X \to I) & \text{``co-unit''}\n\end{array}
$$

satisfying analogues of (\star) , i.e. X is a commutative Frobenius object in (C, \otimes, I) .

Moore–Tachikawa-like TQFTs 12/14

Theorem (Crooks–M.). Any *abelian* Lie groupoid $A \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a *commutative Frobenius* object in the 1-shifted Weinstein symplectic category.

Theorem (Crooks–M.). Any *abelian* Lie groupoid $A \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a *commutative Frobenius* object in the 1-shifted Weinstein symplectic category.

"product": groupoid multiplication

¹ *"unit"*: identity section

Theorem (Crooks–M.). Any **abelian** Lie groupoid $A \rightrightarrows N$ with a 1-shifted symplectic structure (quasi-symplectic groupoid) is a *commutative Frobenius* object in the 1-shifted Weinstein symplectic category.

m "product": groupoid multiplication

¹ *"unit"*: identity section

Corollary. Every quasi-symplectic groupoid $\mathcal G$ **Morita equivalent** to an abelian Lie groupoid induces a TQFT

 $\eta_G : \mathbf{Cob}_2 \longrightarrow \mathbf{1}$ -shifted Weinstein symplectic category

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a $TQFT \textbf{Cob}_2 \rightarrow 1$ -shifted Weinstein symplectic.

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a TQFT $Cob₂ \rightarrow$ 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \text{Lie}(G)$.

- (1) ∃ global slice $\mathcal{S} \subset \mathfrak{g}^*_\text{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$

$$
(3) \ \mathfrak{g}^*_{\mathrm{reg}} \ \text{is Hartogs} : \ \mathbb{C}[\mathfrak{g}^*_{\mathrm{reg}}] = \mathbb{C}[\mathfrak{g}^*]
$$

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a TQFT $Cob₂ \rightarrow$ 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \text{Lie}(G)$.

- (1) ∃ global slice $\mathcal{S} \subset \mathfrak{g}^*_\text{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$
- (3) $\mathfrak{g}^*_{\text{reg}}$ is *Hartogs* : $\mathbb{C}[\mathfrak{g}^*_{\text{reg}}] = \mathbb{C}[\mathfrak{g}^*]$

 $(1) \& (2) \quad \Longrightarrow \quad T^*G|_{\mathfrak{g}^*_{\text{reg}}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a TQFT $Cob₂ \rightarrow$ 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \text{Lie}(G)$.

- (1) ∃ global slice $\mathcal{S} \subset \mathfrak{g}^*_\text{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$
- (3) $\mathfrak{g}^*_{\text{reg}}$ is *Hartogs* : $\mathbb{C}[\mathfrak{g}^*_{\text{reg}}] = \mathbb{C}[\mathfrak{g}^*]$

 $(1) \& (2) \quad \Longrightarrow \quad T^*G|_{\mathfrak{g}^*_{\text{reg}}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \implies \quad regular version of Moore–Tachikawa conjecture $(M\stackrel{\mu}{\rightarrow}\frak{g}_{\rm reg}^*)$ (recovers results of Ginzburg–Kazhdan and Bielawski)

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a TQFT $Cob₂ \rightarrow$ 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \text{Lie}(G)$.

- (1) ∃ global slice $\mathcal{S} \subset \mathfrak{g}^*_\text{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$

$$
(3) \ \mathfrak{g}^*_{\mathrm{reg}} \ \text{is Hartogs} : \ \mathbb{C}[\mathfrak{g}^*_{\mathrm{reg}}] = \mathbb{C}[\mathfrak{g}^*]
$$

 $(1) \& (2) \quad \Longrightarrow \quad T^*G|_{\mathfrak{g}^*_{\text{reg}}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \implies \quad regular version of Moore–Tachikawa conjecture $(M\stackrel{\mu}{\rightarrow}\frak{g}_{\rm reg}^*)$ (recovers results of Ginzburg–Kazhdan and Bielawski)

Theorem (Crooks–M.) There is a functor 1-shifted Weinstein symplectic category −→ Hamiltonian schemes L G¹ G² 7−→ Spec C[G¹ ×^M¹ N ×^M² G2] L

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an abelian groupoid induces a TQFT $Cob_2 \rightarrow 1$ -shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, $\mathfrak{g} := \text{Lie}(G)$.

- (1) ∃ global slice $\mathcal{S} \subset \mathfrak{g}^*_\text{reg}$ for the coadjoint action
- (2) The stabilizers G_{ξ} are abelian for all $\xi \in \mathfrak{g}^*_{\text{reg}}$

$$
(3) \ \mathfrak{g}^*_{\mathrm{reg}} \ \text{is Hartogs} : \ \mathbb{C}[\mathfrak{g}^*_{\mathrm{reg}}] = \mathbb{C}[\mathfrak{g}^*]
$$

 $(1) \& (2) \quad \Longrightarrow \quad T^*G|_{\mathfrak{g}^*_{\text{reg}}}$ is Morita equivalent to $T^*G|_{\mathcal{S}}$, which is abelian \implies \quad regular version of Moore–Tachikawa conjecture $(M\stackrel{\mu}{\rightarrow}\frak{g}_{\rm reg}^*)$ (recovers results of Ginzburg–Kazhdan and Bielawski)

 $(3) \implies$ the composition

 $Cob_2 \longrightarrow 1$ -shifted Weinstein symplectic \longrightarrow Hamiltonian schemes solves the scheme version of the Moore–Tachikawa conjecture.

• Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
	- (3) M_{reg} is Hartogs

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- The isotropy groups \mathcal{G}_x are abelian for all $x \in M_{\text{reg}}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) \exists global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture Further questions.

• What are examples other than duals of complex semisimple Lie algebras?
- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
	- Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
	- Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)
	- Non-affine but regular Poisson varieties also work, e.g.

 $M =$ Grothendieck–Springer resolution

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
	- Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)
	- Non-affine but regular Poisson varieties also work, e.g.
		- $M =$ Grothendieck–Springer resolution
- When are these schemes varieties? (True for \mathfrak{sl}_n)

- Let $M\subset\mathbb{C}^n$ be a smooth complex affine variety with a Poisson structure.
- Suppose that it integrates to an affine symplectic groupoid $\mathcal{G} \rightrightarrows M$.
- Suppose that the analogues of Kostant's 1963 results on complex semisimple Lie algebras hold:
	- (1) ∃ global slice $S \subset M_{\text{reg}}$ for the space of symplectic leaves
	- (2) The isotropy groups \mathcal{G}_x are abelian for all $x\in M_\text{reg}$
	- (3) M_{reg} is Hartogs

Then this determines a TQFT

Example. $M = \mathfrak{g}^*$, \mathfrak{g} complex semisimple \implies Moore-Tachikawa conjecture Further questions.

- What are examples other than duals of complex semisimple Lie algebras?
	- Here's one: $\mathfrak{g} = \mathfrak{sl}_2 \ltimes \mathbb{C}^2$ (5-dimensional non-reductive)
	- Non-affine but regular Poisson varieties also work, e.g.

 $M =$ Grothendieck–Springer resolution

• When are these schemes varieties? (True for \mathfrak{sl}_n)

thank you