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Overview 1/14

Theorem (Kostant 1963). Let G be a complex semisimple group, g := Lie(G).
(1) ∃ global slice S ⊂ g∗reg for the coadjoint action
(2) The stabilizers Gξ are abelian for all ξ ∈ g∗reg

(3) g∗reg is Hartogs : holomorphic functions on g∗reg extend to g∗

Upshot of the talk.
Any not necessarily semisimple Lie algebra satisfying (1)–(3), or, more generally,
Poisson affine variety satisfying analogues of (1)–(3), defines a
Topological Quantum Field Theory valued in Hamiltonian spaces.
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Proof.

The case g complex semisimple is part of the Moore–Tachikawa conjecture.
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G complex semisimple, S ⊂ g∗reg Kostant slice

Three Hamiltonian spaces:

G×G ⟳ T ∗G = G× g∗

G ⟳ G× S
{(g, ξ) ∈ G× S : Ad∗g ξ = ξ}



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

G×G ⟳ T ∗G = G× g∗

G ⟳ G× S
{(g, ξ) ∈ G× S : Ad∗g ξ = ξ}



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

G×G ⟳ T ∗G

= G× g∗

G ⟳ G× S
{(g, ξ) ∈ G× S : Ad∗g ξ = ξ}



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

G×G ⟳ T ∗G = G× g∗

G ⟳ G× S

{(g, ξ) ∈ G× S : Ad∗g ξ = ξ}



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

G×G ⟳ T ∗G = G× g∗

G ⟳ G× S
{(g, ξ) ∈ G× S : Ad∗g ξ = ξ}



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

7−→ G×G ⟳ T ∗G =: M
7−→ G ⟳ G× S =: M
7−→ {(g, ξ) ∈ G× S : Ad∗g ξ = ξ} =: M

∼= ∼=
(M ×M )//G ∼= M (M ×M )//G ∼= M

Conjecture (Moore–Tachikawa 2011). This extends to a functor (TQFT)

ηG : 2-dim cobordisms −→ Hamiltonian spaces

Objects: unions of circles Objects: complex semisimple groups

Morphisms: surfaces Morphisms: G
M→ H

M Hamiltionian G×H-space
Composition: gluing Composition: G M→ H

N→ I
N ◦M := (M ×N)//H



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

7−→ G×G ⟳ T ∗G =: M
7−→ G ⟳ G× S =: M
7−→ {(g, ξ) ∈ G× S : Ad∗g ξ = ξ} =: M

∼= ∼=
(M ×M )//G ∼= M (M ×M )//G ∼= M

Conjecture (Moore–Tachikawa 2011). This extends to a functor (TQFT)

ηG : 2-dim cobordisms −→ Hamiltonian spaces

Objects: unions of circles Objects: complex semisimple groups

Morphisms: surfaces Morphisms: G
M→ H

M Hamiltionian G×H-space
Composition: gluing Composition: G M→ H

N→ I
N ◦M := (M ×N)//H



The Moore–Tachikawa conjecture 2/14

G complex semisimple, S ⊂ g∗reg Kostant slice
Three Hamiltonian spaces:

7−→ G×G ⟳ T ∗G =: M
7−→ G ⟳ G× S =: M
7−→ {(g, ξ) ∈ G× S : Ad∗g ξ = ξ} =: M

∼= ∼=
(M ×M )//G ∼= M (M ×M )//G ∼= M

Conjecture (Moore–Tachikawa 2011). This extends to a functor (TQFT)

ηG : 2-dim cobordisms −→ Hamiltonian spaces

Objects: unions of circles Objects: complex semisimple groups

Morphisms: surfaces Morphisms: G
M→ H

M Hamiltionian G×H-space
Composition: gluing Composition: G M→ H

N→ I
N ◦M := (M ×N)//H



The Moore–Tachikawa conjecture 3/14

It suffices to construct ηG
( )

and verify a finite number of relations such as

=

Examples.

ηSL(2,C)

( )
= C2 ⊗ C2 ⊗ C2

ηSL(3,C)

( )
= Omin(E6)

?
Partial solutions.
• Braverman–Finkelberg–Nakajima: G = SL(n,C) (Coulomb branches)
• Ginzburg–Kazhdan: scheme version (ad hoc construction)

2-dim cobordisms −→ Hamiltonian schemes

• Bielawski : regular version (M
µ→ g∗reg)
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Generalization of manifolds, good for working with singular quotients.

Basic idea. Consider the set of manifolds with Lie group actions (G×M → M).
What would be a natural equivalence relation ∼ on this set such that if

(G1 ×M1 → M1) ∼ (G2 ×M2 → M2)

then M1/G1
∼= M2/G2, H∗

G1
(M1) ∼= H∗

G2
(M2), etc?

e.g. (G×M → M) ∼ (∗ ×M/G → M/G) for a free and proper action.

The stack of G×M → M will be its equivalence class [G×M → M ].

Lie groupoids. G
s
⇒
t
M , gh defined iff s(g) = t(h). x y zh g

x y
A groupoid on M is like an equivalence relation on M
but with more than one ways to identify two points.

Example. G = G×M ⇒M , x g · x(g,x)
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Two Lie groupoids G1 and G2 are Morita equivalent, denoted G1 ∼ G2, if

∃
H

G1 G2

such that H ∼= f∗
1G1 and H ∼= f∗

2G2.

The stack associated to a Lie groupoid G ⇒M is its Morita equivalence class.

Summary. We replace singular quotients by equivalence classes of
manifolds with Lie group actions, or more generally, Lie groupoids.
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Shifted symplectic geometry (Pantev–Toën–Vaquié–Vezzosi 2012) 6/14

The “tangent bundle” of a stack [G ⇒M ]

is the Lie algebroid

Lie(G) −→ TM (vector bundles over M)

up to quasi-isomorphisms of 2-term complexes.

Question. What is a “symplectic form” on a stack [G ⇒M ]?

A symplectic form on a manifold N is an

isomorphism TN ∼= T ∗N .

A “symplectic form” on a stack [G ⇒M ] is a

quasi-isomorphism (Lie(G) −→ TM) ≃ (T ∗M −→ Lie(G)∗).

How should we align them? Three ways!

Lie(G) TM

T ∗M Lie(G)∗

Lie(G) TM

T ∗M Lie(G)∗

Lie(G) TM

T ∗M Lie(G)∗

0-shifted symplectic 1-shifted symplectic 2-shifted symplectic
symplectic geometry
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1-shifted symplectic stack.
G ω ∈ Ω2

G

M ϕ ∈ Ω3
M

satisfying a compatibility condition (dω = s∗ϕ− t∗ϕ) and a non-degeneracy
condition

“tangent bundle” Lie(G) TM

“cotangent bundle” T ∗M Lie(G)∗
quasi-isomorphism

This is exactly the notion of quasi-symplectic groupoids of
Bursztyn–Craininc–Weinstein–Zhu and Xu (2004).

Includes symplectic groupoids, i.e. integrations of Poisson manifolds.

Example. G Lie group, g := Lie(G).

T ∗G ω = canonical

g∗ ϕ = 0
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1-shifted Lagrangians.

L G

(N, γ) M

1-Lagrangian 1-shifted
symplectic

where γ ∈ Ω2
N satisfies some

compatibility and non-degeneracy
conditions.

Example. (M,γ)
µ−→ g∗ Hamiltonian G-space.

G×M T ∗G

(M,γ) g∗

1-Lagrangian 1-shifted
symplectic

µ

Hamiltonian spaces are 1-shifted Lagrangians!
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Example. M → g∗ Hamiltonian G-space.
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T ∗G
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1-Lag 1-Lag

=⇒ G× µ−1(0)⇒ µ−1(0) 0-symplectic

=⇒ µ−1(0)/G symplectic (if free and proper)

Symplectic reduction is a 1-shifted Lagrangian intersection!
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1-shifted Lagrangian correspondences. L → G1 × G−
2

L1 L2

G1 G2 G3

1-Lag corr 1-Lag corr
=⇒

L1 ×G2
L2

G1 G3

1-Lag corr

⇝ 1-shifted Weinstein symplectic “category”
Can be completed to a category (Wehrheim–Woodward trick or derived fibre products)

Moore–Tachikawa conjecture. Every complex semisimple group G induces a TQFT

ηG : 2-dim cobordisms −→ Hamiltonian spaces
Objects: complex semisimple groups
Morphisms: G

M→ H : M Hamil. G×H-space
G

M→ H
N→ I, N ◦M := (M ×N)//H

Composition in the category of Hamiltonian spaces is
intersection of 1-shifted Lagrangians! (Calaque 2015)

2-dim cobordisms −→ 1-shifted Weinstein symplectic category
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A 2d TQFT is a symmetric monoidal functor Cob2 −→ C for some symmetric
monoidal category (C,⊗, I).

Cob2 is generated on objects by ⃝
and on morphisms by with relations

(⋆)

It suffices to specify an object X ∈ C (⃝ 7→ X, ⃝⃝ 7→ X ⊗X, . . . ) and morphisms

7−→ (I → X) “unit”
7−→ (X ⊗X → X) “product”

7−→ (X → X ⊗X) “co-product”
7−→ (X → I) “co-unit”

satisfying analogues of (⋆), i.e. X is a commutative Frobenius object in (C,⊗, I).
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Theorem (Crooks–M.). Any abelian Lie groupoid A⇒ N with a 1-shifted
symplectic structure (quasi-symplectic groupoid) is a commutative Frobenius
object in the 1-shifted Weinstein symplectic category .

7−→
A×N A

A×A A

m “product” : groupoid multiplication

7−→
N

⋆ A

1 “unit”: identity section

Corollary. Every quasi-symplectic groupoid G Morita equivalent to an abelian
Lie groupoid induces a TQFT

ηG : Cob2 −→ 1-shifted Weinstein symplectic category



Moore–Tachikawa-like TQFTs 12/14

Theorem (Crooks–M.). Any abelian Lie groupoid A⇒ N with a 1-shifted
symplectic structure (quasi-symplectic groupoid) is a commutative Frobenius
object in the 1-shifted Weinstein symplectic category .

7−→
A×N A

A×A A

m “product” : groupoid multiplication

7−→
N

⋆ A

1 “unit” : identity section

Corollary. Every quasi-symplectic groupoid G Morita equivalent to an abelian
Lie groupoid induces a TQFT

ηG : Cob2 −→ 1-shifted Weinstein symplectic category



Moore–Tachikawa-like TQFTs 12/14

Theorem (Crooks–M.). Any abelian Lie groupoid A⇒ N with a 1-shifted
symplectic structure (quasi-symplectic groupoid) is a commutative Frobenius
object in the 1-shifted Weinstein symplectic category .

7−→
A×N A

A×A A

m “product” : groupoid multiplication

7−→
N

⋆ A

1 “unit” : identity section

Corollary. Every quasi-symplectic groupoid G Morita equivalent to an abelian
Lie groupoid induces a TQFT

ηG : Cob2 −→ 1-shifted Weinstein symplectic category



Moore–Tachikawa TQFTs 13/14

Theorem (Crooks–M.). Every quasi-symplectic groupoid Morita equivalent to an
abelian groupoid induces a TQFT Cob2 −→ 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, g := Lie(G).
(1) ∃ global slice S ⊂ g∗reg for the coadjoint action
(2) The stabilizers Gξ are abelian for all ξ ∈ g∗reg

(3) g∗reg is Hartogs : C[g∗reg] = C[g∗]

(1) & (2) =⇒ T ∗G|g∗
reg

is Morita equivalent to T ∗G|S , which is abelian
=⇒ regular version of Moore–Tachikawa conjecture (M

µ→ g∗reg)
(recovers results of Ginzburg–Kazhdan and Bielawski)

Theorem (Crooks–M.) There is a functor
1-shifted Weinstein symplectic category −→ Hamiltonian schemes

L
G1 G2

7−→ SpecC[G1 ×M1 N ×M2 G2]
L

(3) =⇒ the composition
Cob2 −→ 1-shifted Weinstein symplectic −→ Hamiltonian schemes

solves the scheme version of the Moore–Tachikawa conjecture.
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• Let M ⊂ Cn be a smooth complex affine variety with a Poisson structure.

• Suppose that it integrates to an affine symplectic groupoid G ⇒M .
• Suppose that the analogues of Kostant’s 1963 results on complex semisimple

Lie algebras hold:
(1) ∃ global slice S ⊂ Mreg for the space of symplectic leaves
(2) The isotropy groups Gx are abelian for all x ∈ Mreg

(3) Mreg is Hartogs
Then this determines a TQFT

2-dimensional
cobordisms

Hamiltonian
schemes

1-shifted Weinstein
symplectic category

Example. M = g∗, g complex semisimple =⇒ Moore–Tachikawa conjecture
Further questions.
• What are examples other than duals of complex semisimple Lie algebras?

- Here’s one: g = sl2 ⋉C2 (5-dimensional non-reductive)
- Non-affine but regular Poisson varieties also work, e.g.
M = Grothendieck–Springer resolution

• When are these schemes varieties? (True for sln)
thank you
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