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Upshot of the talk.

Any not necessarily semisimple Lie algebra satisfying (1)—(3), or, more generally,
Poisson affine variety satisfying analogues of (1)—(3), defines a

Topological Quantum Field Theory valued in Hamiltonian spaces.
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The case g complex semisimple is part of the Moore—Tachikawa conjecture.
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Three Hamiltonian spaces:

00 — GxGOT*G = Mg

DO — GOGxXS = M,
O {(9:6) e G xS Ad £ =¢}
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G complex semisimple, S C gy, Kostant slice
Three Hamiltonian spaces:

00 — GxGOTG = My

D — GOGxS — Mg

O - (9.6 €GxS: AL E=¢) = M,
OO =6 Q0=

(Mg x Mg) /G = Mg (Mg x M) |G = Mg
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G complex semisimple, S C gy, Kostant slice
Three Hamiltonian spaces:

00 — GXxGOTC — Moy
DO s GOGxS — Mg
O — (0.6 €GxS: AL E=¢€) = M,
QD =2 Q02 @
(Mg x Mqg))G = Mg (Mg x M) G = Mg

Conjecture (Moore—-Tachikawa 2011). This extends to a functor (TQFT)

e . 2-dim cobordisms — Hamiltonian spaces
Objects: unions of circles Objects: complex semisimple groups
Morphisms: surfaces Morphisms: G Mu
0 M Hamiltionian G x H-space
Composition: gluing Composition: G MgXr

NoM:=(Mx N)JH
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It suffices to construct ng (ED) and verify a finite number of relations such as

2D = D

Examples.

NSL(2,C) (D) =C?eC?®C?

NSL(3,C) (&J) = Omin(Es)
?
Partial solutions.
e Braverman—Finkelberg—Nakajima: G = SL(n,C) (Coulomb branches)

e Ginzburg—Kazhdan: scheme version (ad hoc construction)

2-dim cobordisms —— Hamiltonian schemes

e Bielawski : regular version (M % Oreg)
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Generalization of manifolds, good for working with singular quotients.

Basic idea. Consider the set of manifolds with Lie group actions (G x M — M).
What would be a natural equivalence relation ~ on this set such that if

(G1 x My — My) ~ (Go X My — M>)
then M, /Gy = My/Go,  HE (M) = HE, (M), etc?
eg. (GxM— M)~ (xx M/G — M/G) for a free and proper action.
The stack of G x M — M will be its equivalence class [G x M — M].

Lie groupoids. G ;K M, gh defined iff s(g) = t(h). « sy L
t

o % A groupoid on M is like an equivalence relation on M
=Y but with more than one ways to identify two points.

Example. G = G x M = M, xﬂg-x
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Two Lie groupoids G; and G are Morita equivalent, denoted Gy ~ Go, if

H
3 g / \ ] such that 7/ = f1'Gy and H = f3G,.
1 2

The stack associated to a Lie groupoid G = M is its Morita equivalence class.

Summary. We replace singular quotients by equivalence classes of
manifolds with Lie group actions, or more generally, Lie groupoids.



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M]



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M] is the Lie algebroid
Lie(G) — TM (vector bundles over M)

up to quasi-isomorphisms of 2-term complexes.



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M] is the Lie algebroid

Lie(G) — TM (vector bundles over M)

up to quasi-isomorphisms of 2-term complexes.

Question. What is a “symplectic form” on a stack [G = M]?



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M] is the Lie algebroid

Lie(G) — TM (vector bundles over M)

up to quasi-isomorphisms of 2-term complexes.
Question. What is a “symplectic form” on a stack [G = M]?
A symplectic form on a manifold NV is an

isomorphism TN = T*N.



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M] is the Lie algebroid
Lie(G) — TM (vector bundles over M)
up to quasi-isomorphisms of 2-term complexes.
Question. What is a “symplectic form” on a stack [G = M]?
A symplectic form on a manifold NV is an
isomorphism TN = T*N.
A “symplectic form” on a stack [G = M] is a

quasi-isomorphism (Lie(G) — TM) ~ (T*M — Lie(G)™).



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)

The “tangent bundle” of a stack [G = M] is the Lie algebroid

Lie(G) — TM (vector bundles over M)
up to quasi-isomorphisms of 2-term complexes.
Question. What is a “symplectic form” on a stack [G = M]?
A symplectic form on a manifold NV is an

isomorphism TN = T*N.
A “symplectic form” on a stack [G = M] is a
quasi-isomorphism (Lie(G) — TM) ~ (T*M — Lie(G)").

How should we align them?

6/14



Shifted symplectic geometry (Pantev-Toén-Vaquie-Vezzosi 2012)  6/14

The “tangent bundle” of a stack [G = M] is the Lie algebroid

Lie(G) — TM (vector bundles over M)
up to quasi-isomorphisms of 2-term complexes.
Question. What is a “symplectic form” on a stack [G = M]?
A symplectic form on a manifold NV is an

isomorphism TN = T*N.
A “symplectic form” on a stack [G = M] is a
quasi-isomorphism (Lie(G) — TM) ~ (T*M — Lie(G)").

How should we align them? Three ways!

Lie(G) — TM Lie(G) — TM Lie(G) — TM
! ! 3
"M — Lie(G)* T*M — Lie(G)" |T*M — Lie(G)"
0-shifted symplectic 1-shifted symplectic 2-shifted symplectic
symplectic geometry
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1-shifted symplectic stack.

G welf
W
M ¢,

satisfying a compatibility condition (dw = s*¢ — t*¢) and a non-degeneracy
condition

“tangent bundle” Lie(G) — TM
! l quasi-isomorphism
“cotangent bundle” T*M — Lie(G)*

This is exactly the notion of quasi-symplectic groupoids of
Bursztyn—Craininc—Weinstein—Zhu and Xu (2004).

Includes symplectic groupoids, i.e. integrations of Poisson manifolds.
Example. G Lie group, g := Lie(G).

T*G  w = canonical

i
g =0
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1-shifted Lagrangians.

L—(

u u where v € Q3% satisfies some
(N,y) ——— M compatibility and non-degeneracy
, 1-shifted conditions.
hagrangian symplectic

Example. (M,~) 5 g* Hamiltonian G-space.

GxM — TG

I I

(M) ———— ¢’

1-shifted

1-Lagrangian symplectic

Hamiltonian spaces are 1-shifted Lagrangians!
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Theorem (Pantev-Toén—-Vaquié-Vezzosi 2012).

ﬁl £2
nkj Ag = L1 xg L2 (n— 1)-symplectic
g

Tn-symp

Example. M — g* Hamiltonian G-space.

GxM

G
\ / = G x p~1(0) = p~1(0) O-symplectic
1-Lag 1-Lag
TG = u~1(0)/G symplectic (if free and proper)
1-symp

Symplectic reduction is a 1-shifted Lagrangian intersection!
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1-shifted Lagrangian correspondences. £ — Gy x G5

El EQ El XGs £2
1-Lag corr 1-Lag corr 1-Lag corr
G1 G2 g3 g1 Gs

~» 1-shifted Weinstein symplectic “category”
Can be completed to a category (Wehrheim—Woodward trick or derived fibre products)
Moore—Tachikawa conjecture. Every complex semisimple group G induces a TQFT

ng: 2-dim cobordisms — Hamiltonian spaces
Objects: complex semisimple groups
Morphisms: G M H . M Hamil. G x H-space
GMHESI NoM=(MxN)JH

Composition in the category of Hamiltonian spaces is
intersection of 1-shifted Lagrangians! (Calaque 2015)

2-dim cobordisms — 1-shifted Weinstein symplectic category
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Commutative Frobenius objects

A 2d TQFT is a symmetric monoidal functor Cob, — C for some symmetric
monoidal category (C,®,I).

Cob, is generated on objects by O

and on morphisms by @ b o — @ o % with relations

-
5 @ €

@M@

It suffices to specify an object X € C (O — X, OO+~ X ® X, ...) and morphisms
o +— (I—=X) “unit”
D — (X®X — X) ‘product”

(
0@ — (X > X®X) ‘“co-product”
> — (X—=1I “co-unit”

satisfying analogues of (%), i.e. X is a commutative Frobenius object in (C,®,I).
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Theorem (Crooks—M.). Any abelian Lie groupoid A = N with a 1-shifted

symplectic structure (quasi-symplectic groupoid) is a commutative Frobenius
object in the 1-shifted Weinstein symplectic category.

A XN .A
— m “product”: groupoid multiplication
b VAR p group p

Ax A A
N
@ N / Y‘ “unit”: identity section
* A

Corollary. Every quasi-symplectic groupoid G Morita equivalent to an abelian
Lie groupoid induces a TQFT

ng : Cob, — 1-shifted Weinstein symplectic category
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Theorem (Crooks—M.). Every quasi-symplectic groupoid Morita equivalent to an
abelian groupoid induces a TQFT Cob, — 1-shifted Weinstein symplectic.

Theorem (Kostant 1963). G complex semisimple group, g := Lie(G).
(1) 3 global slice S C gy, for the coadjoint action

(2) The stabilizers G¢ are abelian for all £ € gy,

(3) @reg is Hartogs : Clgreg] = Clg”]

(1) &(2) = TG
—  regular version of Moore-Tachikawa conjecture (M % Oreg)
(recovers results of Ginzburg-Kazhdan and Bielawski)

Ore is Morita equivalent to T*G|s, which is abelian

Theorem (Crooks—M.) There is a functor
1-shifted Weinstein symplectic category — Hamiltonian schemes
— L ~ —  SpecC[G1 X, N X, Gol”
G1 Go

(3) = the composition
Cob, — 1-shifted Weinstein symplectic — Hamiltonian schemes
solves the scheme version of the Moore—Tachikawa conjecture.
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(3) Mieg is Hartogs

Then this determines a TQFT

2-dimensional Hamiltonian
cobordisms schemes

1-shifted Weinstein
symplectic category
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