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Definitions/notation

{topology}

��
{combinatorics}

77

// {commutative
algebra }

DJK ,_

H∗( )

��

ZK_

��
K � //

3

99

k[K ], TorS(k[K ], k)

To a simplicial complex K on [m] = {1, . . . ,m} we associate:

the Stanley–Reisner ring k[K ] = S/IK ,

S = k[v1, . . . , vm], |vi | = 2, IK = (vi1 · · · vir | {i1, . . . , ir} /∈ K )

the moment-angle complex, the Davis–Januszkiewicz space
ZK = (D2,S1)K DJK = (CP∞, ∗)K

the homotopy fibration

ZK
ω−→ DJK ↪−→ BTm.
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Hard problem: Determine the homotopy type of ZK from the
combinatorics of K .

Equivalent problem: Determine the homotopy type of ZK from the
Stanley–Reisner ring k[K ].

Easier(?) problem: Determine the homotopy type of ZK from the
minimal free resolution of k[K ].

Fp
∂p−→ · · · → F1

∂1−→ F0 → k[K ]→ 0

Fi =
⊕
j∈Z

S(−j)βi,j , rank(Fi ) = βi = dimk TorSi (k[K ], k)
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Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

H∗(ZK ) ∼= TorS∗ (k[K ], k)

∼=
⊕
J⊆[m]

H̃∗(KJ). ←Hochster’s formula

This gives a topological interpretation of the modules appearing in
the minimal free resolution F• of k[K ].

Avramov–Golod (1971): TorS∗ (k[K ], k) is a Poincaré duality alg.
⇔ K is Gorenstein.

Cai (2017): ZK is a manifold ⇔ K is Gorenstein.

What about the differentials?
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Cohomology operations
Let Λ = Λ(ι1, . . . , ιm), |ιj | = −1.

Tm y ZK induces derivations ιj : H∗(ZK )→ H∗−1(ZK )

S1
j ×ZK −→ ZK

H∗(ZK ) −→ Λ(u)⊗ H∗(ZK )

α 7−→ 1⊗ α + u ⊗ ιj(α)

making H∗(ZK ) a graded Λ-module.

Define a dg Λ-module structure on the reduced Koszul complex

R∗(K ) :=
(
k[K ]⊗ Λ(u1, . . . , um)

)
/(v2i , viui ), dui = vi

by letting each ιj act by the graded derivation ∂
∂uj

:

ιj(vi ) = 0, ιj(ui ) =

{
1 if i = j

0 if i 6= j .
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Cohomology operations

Proposition (A.–Briggs)

There is a natural (in K ) isomorphism of dg Λ-modules

C ∗cw (ZK ) ∼= R∗(K ).

Therefore H∗(ZK ) ∼= TorS∗ (k[K ], k) as graded Λ-modules.

There are commutative diagrams

Hn(ZK )
∼= //

ιj

��

⊕
J⊆[m] H̃

n−|J|−1(KJ)

��

Hn−1(ZK )
∼= //

⊕
J⊆[m] H̃

n−|J|−2(KJ)

where the right vertical map is induced by inclusions KJ\{j} ↪→ KJ .



Cohomology operations Λ(ι1, . . . , ιm)⊗ H∗(ZK )→ H∗(ZK )

Λ(ι1, . . . , ιm) embeds into an algebra of higher cohomology
operations induced by the Tm-action (in the sense of GKM):

δs : H∗(X )→ H∗−2 deg s+1(X )

for each monomial s ∈ S = k[v1, . . . , vm] (where δvj = ιj).

Theorem (A.–Briggs)

The cohomology operations δs assemble into a differential

δ =
∑
sq-free

monomials

s ⊗ δs =
∑

U⊆[m]

vU ⊗ δU

making
(
S ⊗ H∗(ZK ), δ

)
the minimal free resolution of k[K ].

H∗(ZK ) as Λ(ι1, . . . , ιm)-module ! linear part of the resolution
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Homotopy type of ZK

There is a hierarchy of families of simplicial complexes:

shifted ⊂ vertex-
decomposable ⊂ shellable ⊂ sequentially

Cohen–Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto)

If the dual of K belongs to one of the classes above, then ZK is homotopy
equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial
complexes in terms of the minimal free resolution of k[K ]:

Theorem (Eagon–Reiner, 1998)

K is dual Cohen–Macaulay if and only if k[K ] has a linear resolution.
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Homotopy type of ZK

“sweep action”

Tm y ZK
// Λ(λ1, . . . , λm)⊗ H∗(ZK )→ H∗(ZK )

Sn

f
��

S2

µi
��

ZK
ω // DJK // BTm

Theorem (A.–Briggs)

If f ∈ πn(ZK ) has Hurewicz image h(f ) ∈ Hn(ZK ), then

λih(f ) = h
(
[µi , ω ◦ f ]

)
∈ Hn+1(ZK )

where [µi , ω ◦ f ] is the lift of the Whitehead prod. [µi , ω ◦ f ] ∈ πn+1(DJK ).
In particular, the Hurewicz image of ZK is closed under the sweep action.



Homotopy type of ZK

Corollary

For any simplicial complex K, the image of the Hurewicz map

h : π∗(ZK ) −→ H∗(ZK )

contains the linear strand of k[K ], i.e., the Λ(λ1, . . . , λm)-submodule of
H∗(ZK ) ∼= ExtS(k[K ], k) generated by Ext1S(k[K ], k).

Fact: X '
∨

i S
ni ⇔ h : π∗(X )→ H∗(X ) is surjective.

Corollary

If k[K ] has a linear resolution over k = Z (resp. Z/p), then ZK has the
homotopy type (resp. p-local homotopy type) of a wedge of spheres.
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Homotopy type of ZK

Corollary

If k[K ] is dual seq. Cohen–Macaulay over k = Z (resp. Z/p), then ZK has
the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus
Herzog–Hibi (1999): K is seq. dual Cohen–Macaulay iff k[K ] has
componentwise linear resolution.

Corollary

If K is flag with chordal 1-skeleton, then ZK ' wedge of spheres.

Proof.

Use Corollary above plus
Fröberg (1990): K flag with chordal 1-skeleton iff k[K ] has a 2-linear
resolution.
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Fröberg (1990): K flag with chordal 1-skeleton iff k[K ] has a 2-linear
resolution.



Homotopy types of moment-angle manifolds

If K 6= ∂∆m−1 is a sphere triangulation (or Gorenstein complex), then
k[K ] cannot have a linear or componentwise linear resolution.

Definition

k[K ] has an almost linear resolution if it has a d-linear resolution for p − 1
steps, for some d , where p = proj dim k[K ].

Examples:

I Boundary complexes of polygons
I Boundary complexes of cyclic polytopes C (2n,m)
I Odd-dimensional neighbourly sphere triangulations

(An (n − 1)-dimensional K is neighbourly if every set of k 6 b n2c
vertices is a face of K .)

Conjecture (Kalai): lim
m→∞

#nbrly (n−1)-spheres on m vertices
# (n−1)-spheres on m vertices = 1

for n > 4.
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Homotopy types of moment-angle manifolds

Definition

k[K ] being componentwise almost linear (CAL) is defined similarly and is
equivalent to the minimal free resolution F• satisfying

Hi (lin(F•)) = 0 for 1 < i < proj dim k[K ].

Examples:
I All Gorenstein complexes with almost linear resolution
I Boundary complexes of stacked polytopes
I Connected sums of above examples

Theorem (A.–Briggs)

If K is a Gorenstein complex which is CAL, then

ZK 'Q connected sum of sphere products

ΩZK ' product of loops of spheres.
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H∗(ZK ) for K = D
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THANK YOU!


