
Homotopy types of moment-angle complexes
associated to almost linear resolutions

Steven Amelotte
(joint with Ben Briggs)

Workshop on Polyhedral Products
Fields Institute
July 30, 2024



Definitions/notation

{topology}

��
{combinatorics}

77

// {commutative
algebra }

DJK ,_

H∗( )

��

ZK_

��
K � //

3

99

k[K ], TorS(k[K ], k)

To a simplicial complex K on [m] = {1, . . . ,m} we associate:

the Stanley–Reisner ring k[K ] = S/IK ,

S = k[v1, . . . , vm], |vi | = 2, IK = (vi1 · · · vir | {i1, . . . , ir} /∈ K )

the moment-angle complex, the Davis–Januszkiewicz space
ZK = (D2,S1)K DJK = (CP∞, ∗)K

the homotopy fibration

ZK
ω−→ DJK ↪−→ BTm.
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Hard problem: Determine the homotopy type of ZK from the
combinatorics of K .

Equivalent problem: Determine the homotopy type of ZK from the
Stanley–Reisner ring k[K ].

Easier(?) problem: Determine the homotopy type of ZK from the
minimal free resolution of k[K ].

Fp
∂p−→ · · · → F1

∂1−→ F0 → k[K ]→ 0

Fi =
⊕
j∈Z

S(−j)βi,j , rank(Fi ) = βi = dimk TorSi (k[K ], k)
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Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K ) isomorphisms of graded algebras

H∗(ZK ) ∼= TorS∗ (k[K ], k)

∼=
⊕
J⊆[m]

H̃∗(KJ). ←Hochster’s formula

This gives a topological interpretation of the modules appearing in
the minimal free resolution F• of k[K ].

Avramov–Golod (1971): TorS∗ (k[K ], k) is a Poincaré duality alg.
⇔ K is Gorenstein.

Cai (2017): ZK is a manifold ⇔ K is Gorenstein.

What about the differentials?
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⇔ K is Gorenstein.

Cai (2017): ZK is a manifold ⇔ K is Gorenstein.

What about the differentials?



Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K ) isomorphisms of graded algebras

H∗(ZK ) ∼= TorS∗ (k[K ], k)

∼=
⊕
J⊆[m]

H̃∗(KJ). ←Hochster’s formula

This gives a topological interpretation of the modules appearing in
the minimal free resolution F• of k[K ].

Avramov–Golod (1971): TorS∗ (k[K ], k) is a Poincaré duality alg.
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Cohomology operations
Let Λ = Λ(ι1, . . . , ιm), |ιj | = −1.

Tm y ZK induces derivations ιj : H∗(ZK )→ H∗−1(ZK )

S1
j ×ZK −→ ZK

H∗(ZK ) −→ Λ(u)⊗ H∗(ZK )

α 7−→ 1⊗ α + u ⊗ ιj(α)

making H∗(ZK ) a graded Λ-module.

Define a dg Λ-module structure on the reduced Koszul complex

R∗(K ) :=
(
k[K ]⊗ Λ(u1, . . . , um)

)
/(v2i , viui ), dui = vi

by letting each ιj act by the graded derivation ∂
∂uj

:

ιj(vi ) = 0, ιj(ui ) =

{
1 if i = j

0 if i 6= j .
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Cohomology operations

Proposition (A.–Briggs)

There is a natural (in K ) isomorphism of dg Λ-modules

C ∗cw (ZK ) ∼= R∗(K ).

Therefore H∗(ZK ) ∼= TorS∗ (k[K ], k) as graded Λ-modules.

There are commutative diagrams

Hn(ZK )
∼= //

ιj

��

⊕
J⊆[m] H̃

n−|J|−1(KJ)

��

Hn−1(ZK )
∼= //

⊕
J⊆[m] H̃

n−|J|−2(KJ)

where the right vertical map is induced by inclusions KJ\{j} ↪→ KJ .



Cohomology operations Λ(ι1, . . . , ιm)⊗ H∗(ZK )→ H∗(ZK )

Λ(ι1, . . . , ιm) embeds into an algebra of higher cohomology
operations induced by the Tm-action (in the sense of GKM):

δs : H∗(X )→ H∗−2 deg s+1(X )

for each monomial s ∈ S = k[v1, . . . , vm] (where δvj = ιj).

Theorem (A.–Briggs)

The cohomology operations δs assemble into a differential

δ =
∑
sq-free

monomials

s ⊗ δs =
∑

U⊆[m]

vU ⊗ δU

making
(
S ⊗ H∗(ZK ), δ

)
the minimal free resolution of k[K ].

H∗(ZK ) as Λ(ι1, . . . , ιm)-module ! linear part of the resolution
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Homotopy type of ZK

There is a hierarchy of families of simplicial complexes:

shifted ⊂ vertex-
decomposable ⊂ shellable ⊂ sequentially

Cohen–Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto)

If the dual of K belongs to one of the classes above, then ZK is homotopy
equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial
complexes in terms of the minimal free resolution of k[K ]:

Theorem (Eagon–Reiner, 1998)

K is dual Cohen–Macaulay if and only if k[K ] has a linear resolution.
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Homotopy type of ZK

“sweep action”

Tm y ZK
// Λ(λ1, . . . , λm)⊗ H∗(ZK )→ H∗(ZK )

Sn

f
��

S2

µi
��

ZK
ω // DJK // BTm

Theorem (A.–Briggs)

If f ∈ πn(ZK ) has Hurewicz image h(f ) ∈ Hn(ZK ), then

λih(f ) = h
(
[µi , ω ◦ f ]

)
∈ Hn+1(ZK )

where [µi , ω ◦ f ] is the lift of the Whitehead prod. [µi , ω ◦ f ] ∈ πn+1(DJK ).
In particular, the Hurewicz image of ZK is closed under the sweep action.



Homotopy type of ZK

Corollary

For any simplicial complex K , the image of the Hurewicz map

h : π∗(ZK ) −→ H∗(ZK )

contains the linear strand of k[K ], i.e., the Λ(λ1, . . . , λm)-submodule of
H∗(ZK ) ∼= ExtS(k[K ], k) generated by Ext1S(k[K ], k).

Fact: X '
∨

i S
ni ⇔ h : π∗(X )→ H∗(X ) is surjective.

Corollary

If k[K ] has a linear resolution over k = Z (resp. Z/p), then ZK has the
homotopy type (resp. p-local homotopy type) of a wedge of spheres.
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Homotopy type of ZK

Corollary

If k[K ] is dual seq. Cohen–Macaulay over k = Z (resp. Z/p), then ZK has
the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus
Herzog–Hibi (1999): K is seq. dual Cohen–Macaulay iff k[K ] has
componentwise linear resolution.

Corollary

If K is flag with chordal 1-skeleton, then ZK ' wedge of spheres.

Proof.

Use Corollary above plus
Fröberg (1990): K flag with chordal 1-skeleton iff k[K ] has a 2-linear
resolution.
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Homotopy types of moment-angle manifolds

If K 6= ∂∆m−1 is a sphere triangulation (or Gorenstein complex), then
k[K ] cannot have a linear or componentwise linear resolution.

Definition

k[K ] has an almost linear resolution if it has a d-linear resolution for p − 1
steps, for some d , where p = proj dim k[K ].

Examples:

I Boundary complexes of polygons
I Boundary complexes of cyclic polytopes C (2n,m)
I Odd-dimensional neighbourly sphere triangulations

(An (n − 1)-dimensional K is neighbourly if every set of k 6 b n2c
vertices is a face of K .)

Conjecture (Kalai): lim
m→∞

#nbrly (n−1)-spheres on m vertices
# (n−1)-spheres on m vertices = 1

for n > 4.
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Homotopy types of moment-angle manifolds

Definition

k[K ] being componentwise almost linear (CAL) is defined similarly and is
equivalent to the minimal free resolution F• satisfying

Hi (lin(F•)) = 0 for 1 < i < proj dim k[K ].

Examples:
I All Gorenstein complexes with almost linear resolution
I Boundary complexes of stacked polytopes
I Connected sums of above examples

Theorem (A.–Briggs)

If K is a Gorenstein complex which is CAL, then

ZK 'Q connected sum of sphere products

ΩZK ' product of loops of spheres.
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H∗(ZK ) for K = D
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THANK YOU!


