Homotopy types of moment-angle complexes associated to almost linear resolutions

> Steven Amelotte (joint with Ben Briggs)

Workshop on Polyhedral Products Fields Institute July 30, 2024

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

• the Stanley–Reisner ring $k[K] = S/I_K$,

 $S = k[v_1, \ldots, v_m], \ |v_i| = 2, \quad I_{\mathcal{K}} = (v_{i_1} \cdots v_{i_r} \mid \{i_1, \ldots, i_r\} \notin \mathcal{K})$

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

• the Stanley–Reisner ring $k[K] = S/I_K$,

$$S = k[v_1, ..., v_m], |v_i| = 2, \quad I_K = (v_{i_1} \cdots v_{i_r} | \{i_1, ..., i_r\} \notin K)$$

- the moment-angle complex, the Davis–Januszkiewicz space $\mathcal{Z}_{K} = (D^{2}, S^{1})^{K}$ $DJ_{K} = (\mathbb{C}P^{\infty}, *)^{K}$
- the homotopy fibration

$$\mathcal{Z}_{K} \stackrel{\omega}{\longrightarrow} DJ_{K} \hookrightarrow BT^{m}.$$

- Hard problem: Determine the homotopy type of $\mathcal{Z}_{\mathcal{K}}$ from the combinatorics of \mathcal{K} .
- Equivalent problem: Determine the homotopy type of \mathcal{Z}_{K} from the Stanley–Reisner ring k[K].
- Easier(?) problem: Determine the homotopy type of \mathcal{Z}_{K} from the minimal free resolution of k[K].

$$F_{\rho} \xrightarrow{\partial_{\rho}} \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to k[K] \to 0$$

 $F_i = \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}}, \quad \operatorname{rank}(F_i) = \beta_i = \dim_k \operatorname{Tor}_i^S(k[K], k)$

- Hard problem: Determine the homotopy type of \mathcal{Z}_{K} from the combinatorics of K.
- Equivalent problem: Determine the homotopy type of $\mathcal{Z}_{\mathcal{K}}$ from the Stanley–Reisner ring $k[\mathcal{K}]$.
- Easier(?) problem: Determine the homotopy type of \mathcal{Z}_K from the minimal free resolution of k[K].

$$F_{\rho} \xrightarrow{\partial_{\rho}} \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to k[K] \to 0$$

 $F_i = \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}}, \quad \operatorname{rank}(F_i) = \beta_i = \dim_k \operatorname{Tor}_i^S(k[K], k)$

- Hard problem: Determine the homotopy type of \mathcal{Z}_{K} from the combinatorics of K.
- Equivalent problem: Determine the homotopy type of \mathcal{Z}_{K} from the Stanley–Reisner ring k[K].
- Easier(?) problem: Determine the homotopy type of \mathcal{Z}_{K} from the minimal free resolution of k[K].

$$F_{\rho} \xrightarrow{\partial_{\rho}} \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to k[K] \to 0$$

$$F_i = \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}}, \quad \operatorname{rank}(F_i) = \beta_i = \dim_k \operatorname{Tor}_i^S(k[K], k)$$

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_{\mathcal{K}}) \cong \operatorname{Tor}^{\mathcal{S}}_*(k[\mathcal{K}], k)$ $\cong \bigoplus_{J \subseteq [m]} \widetilde{H}^*(\mathcal{K}_J). \quad \leftarrow \text{Hochster's formula}$

 This gives a topological interpretation of the modules appearing in the minimal free resolution F_• of k[K].

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K], k)$ is a Poincaré duality alg. $\Leftrightarrow K$ is Gorenstein.

Cai (2017): \mathcal{Z}_K is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_{\mathcal{K}}) \cong \operatorname{Tor}^{\mathcal{S}}_*(k[\mathcal{K}], k)$ $\cong \bigoplus_{J \subseteq [m]} \widetilde{H}^*(\mathcal{K}_J). \quad \leftarrow \text{Hochster's formula}$

 This gives a topological interpretation of the modules appearing in the minimal free resolution F_• of k[K].

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K], k)$ is a Poincaré duality alg. $\Leftrightarrow K$ is Gorenstein.

Cai (2017): \mathcal{Z}_{K} is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_{\mathcal{K}}) \cong \operatorname{Tor}^{\mathcal{S}}_*(k[\mathcal{K}], k)$ $\cong \bigoplus_{J \subseteq [m]} \widetilde{H}^*(\mathcal{K}_J). \quad \leftarrow \text{Hochster's formula}$

 This gives a topological interpretation of the modules appearing in the minimal free resolution F_● of k[K].

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K], k)$ is a Poincaré duality alg. $\Leftrightarrow K$ is Gorenstein.

Cai (2017): \mathcal{Z}_K is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology operations

Let $\Lambda = \Lambda(\iota_1, \ldots, \iota_m)$, $|\iota_j| = -1$.

• $T^m \curvearrowright \mathcal{Z}_K$ induces derivations $\iota_j \colon H^*(\mathcal{Z}_K) \to H^{*-1}(\mathcal{Z}_K)$

$$\begin{array}{cccc} S_{j}^{1} \times \mathcal{Z}_{K} & \longrightarrow & \mathcal{Z}_{K} \\ H^{*}(\mathcal{Z}_{K}) & \longrightarrow & \Lambda(u) \otimes H^{*}(\mathcal{Z}_{K}) \\ \alpha & \longmapsto & 1 \otimes \alpha + u \otimes \iota_{j}(\alpha) \end{array}$$

making $H^*(\mathcal{Z}_K)$ a graded Λ -module.

Cohomology operations

Let $\Lambda = \Lambda(\iota_1, \ldots, \iota_m)$, $|\iota_j| = -1$.

• $T^m \curvearrowright \mathcal{Z}_K$ induces derivations $\iota_j \colon H^*(\mathcal{Z}_K) \to H^{*-1}(\mathcal{Z}_K)$

$$\begin{array}{rcl} S_{j}^{1} \times \mathcal{Z}_{\mathcal{K}} & \longrightarrow & \mathcal{Z}_{\mathcal{K}} \\ H^{*}(\mathcal{Z}_{\mathcal{K}}) & \longrightarrow & \Lambda(u) \otimes H^{*}(\mathcal{Z}_{\mathcal{K}}) \\ & \alpha & \longmapsto & 1 \otimes \alpha + u \otimes \iota_{j}(\alpha) \end{array}$$

making $H^*(\mathcal{Z}_K)$ a graded Λ -module.

• Define a dg A-module structure on the *reduced Koszul complex*

$$R^*(K) \coloneqq (k[K] \otimes \Lambda(u_1, \ldots, u_m))/(v_i^2, v_i u_i), \quad du_i = v_i$$

by letting each ι_j act by the graded derivation $\frac{\partial}{\partial u_i}$:

$$\iota_j(v_i) = 0, \qquad \iota_j(u_i) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

Cohomology operations

Proposition (A.-Briggs)

• There is a natural (in K) isomorphism of dg Λ -modules

$$C^*_{cw}(\mathcal{Z}_K)\cong R^*(K).$$

Therefore $H^*(\mathcal{Z}_{\mathcal{K}}) \cong \operatorname{Tor}^{\mathcal{S}}_*(k[\mathcal{K}], k)$ as graded Λ -modules.

• There are commutative diagrams

$$\begin{array}{c} H^{n}(\mathcal{Z}_{K}) \xrightarrow{\cong} \bigoplus_{J \subseteq [m]} \widetilde{H}^{n-|J|-1}(K_{J}) \\ \downarrow^{\iota_{j}} & \downarrow \\ H^{n-1}(\mathcal{Z}_{K}) \xrightarrow{\cong} \bigoplus_{J \subseteq [m]} \widetilde{H}^{n-|J|-2}(K_{J}) \end{array}$$

where the right vertical map is induced by inclusions $K_{J\setminus\{j\}} \hookrightarrow K_J$.

Cohomology operations $\Lambda(\iota_1, \ldots, \iota_m) \otimes H^*(\mathcal{Z}_K) \to H^*(\mathcal{Z}_K)$

 Λ(ι₁,..., ι_m) embeds into an algebra of *higher cohomology* operations induced by the T^m-action (in the sense of GKM):

$$\delta_s \colon H^*(X) \to H^{*-2\deg s+1}(X)$$

for each monomial $s \in S = k[v_1, \ldots, v_m]$ (where $\delta_{v_j} = \iota_j$).

Cohomology operations $\Lambda(\iota_1, \ldots, \iota_m) \otimes H^*(\mathcal{Z}_K) \to H^*(\mathcal{Z}_K)$

 Λ(ι₁,..., ι_m) embeds into an algebra of *higher cohomology* operations induced by the T^m-action (in the sense of GKM):

$$\delta_s \colon H^*(X) \to H^{*-2\deg s+1}(X)$$

for each monomial $s \in S = k[v_1, \ldots, v_m]$ (where $\delta_{v_j} = \iota_j$).

Theorem (A.–Briggs)

The cohomology operations δ_s assemble into a differential

$$\delta = \sum_{\substack{\text{sq-free} \\ \text{monomials}}} s \otimes \delta_s = \sum_{U \subseteq [m]} v_U \otimes \delta_U$$

making $(S \otimes H^*(\mathcal{Z}_K), \delta)$ the minimal free resolution of k[K].

 $H^*(\mathcal{Z}_K)$ as $\Lambda(\iota_1,\ldots,\iota_m)$ -module \iff linear part of the resolution

There is a hierarchy of families of simplicial complexes:

shifted \subset vertexdecomposable \subset shellable \subset shellable \subset Cohen-Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto) If the dual of K belongs to one of the classes above, then \mathcal{Z}_K is homotopy equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial complexes in terms of the minimal free resolution of k[K]:

Theorem (Eagon–Reiner, 1998)

K is dual Cohen–Macaulay if and only if k[K] has a linear resolution.

There is a hierarchy of families of simplicial complexes:

shifted \subset vertexdecomposable \subset shellable \subset sequentially Cohen-Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto) If the dual of K belongs to one of the classes above, then \mathcal{Z}_K is homotopy equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial complexes in terms of the minimal free resolution of k[K]:

Theorem (Eagon-Reiner, 1998)

K is dual Cohen–Macaulay if and only if k[K] has a linear resolution.

Homotopy type of \mathcal{Z}_{K}

"sweep action"

$$T^m \curvearrowright \mathcal{Z}_K \longrightarrow \Lambda(\lambda_1, \ldots, \lambda_m) \otimes H_*(\mathcal{Z}_K) \to H_*(\mathcal{Z}_K)$$

Theorem (A.–Briggs)

If $f \in \pi_n(\mathcal{Z}_K)$ has Hurewicz image $h(f) \in H_n(\mathcal{Z}_K)$, then

$$\lambda_i h(f) = h([\overline{\mu_i, \omega \circ f}]) \in H_{n+1}(\mathcal{Z}_{\mathcal{K}})$$

where $[\mu_i, \omega \circ f]$ is the lift of the Whitehead prod. $[\mu_i, \omega \circ f] \in \pi_{n+1}(DJ_K)$. In particular, the Hurewicz image of \mathcal{Z}_K is closed under the sweep action.

Corollary

For any simplicial complex K, the image of the Hurewicz map

$$h: \pi_*(\mathcal{Z}_K) \longrightarrow H_*(\mathcal{Z}_K)$$

contains the linear strand of k[K], i.e., the $\Lambda(\lambda_1, \ldots, \lambda_m)$ -submodule of $H_*(\mathcal{Z}_K) \cong \operatorname{Ext}_S(k[K], k)$ generated by $\operatorname{Ext}^1_S(k[K], k)$.

Fact: $X \simeq \bigvee_i S^{n_i} \Leftrightarrow h: \pi_*(X) \to H_*(X)$ is surjective.

Corollary

For any simplicial complex K, the image of the Hurewicz map

$$h: \pi_*(\mathcal{Z}_K) \longrightarrow H_*(\mathcal{Z}_K)$$

contains the linear strand of k[K], i.e., the $\Lambda(\lambda_1, \ldots, \lambda_m)$ -submodule of $H_*(\mathcal{Z}_K) \cong \operatorname{Ext}_{\mathcal{S}}(k[K], k)$ generated by $\operatorname{Ext}^1_{\mathcal{S}}(k[K], k)$.

Fact: $X \simeq \bigvee_i S^{n_i} \Leftrightarrow h: \pi_*(X) \to H_*(X)$ is surjective.

Corollary

If k[K] has a linear resolution over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Corollary

If k[K] is dual seq. Cohen–Macaulay over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus **Herzog–Hibi (1999):** K is seq. dual Cohen–Macaulay iff k[K] has componentwise linear resolution.

Corollary

If k[K] is dual seq. Cohen–Macaulay over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus **Herzog–Hibi (1999):** K is seq. dual Cohen–Macaulay iff k[K] has componentwise linear resolution.

Corollary

If K is flag with chordal 1-skeleton, then $\mathcal{Z}_K \simeq$ wedge of spheres.

Proof.

Use Corollary above plus **Fröberg (1990):** K flag with chordal 1-skeleton iff k[K] has a 2-linear resolution.

If $K \neq \partial \Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then k[K] cannot have a linear or componentwise linear resolution.

Definition

k[K] has an *almost linear resolution* if it has a *d*-linear resolution for p-1 steps, for some *d*, where p = proj dim k[K].

If $K \neq \partial \Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then k[K] cannot have a linear or componentwise linear resolution.

Definition

k[K] has an *almost linear resolution* if it has a *d*-linear resolution for p-1 steps, for some *d*, where p = proj dim k[K].

Examples:

- Boundary complexes of polygons
- ▶ Boundary complexes of cyclic polytopes C(2n, m)
- Odd-dimensional neighbourly sphere triangulations (An (n − 1)-dimensional K is neighbourly if every set of k ≤ Lⁿ₂) vertices is a face of K.)

If $K \neq \partial \Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then k[K] cannot have a linear or componentwise linear resolution.

Definition

k[K] has an *almost linear resolution* if it has a *d*-linear resolution for p-1 steps, for some *d*, where p = proj dim k[K].

Examples:

- Boundary complexes of polygons
- ▶ Boundary complexes of cyclic polytopes C(2n, m)
- Odd-dimensional neighbourly sphere triangulations (An (n − 1)-dimensional K is neighbourly if every set of k ≤ [ⁿ/₂] vertices is a face of K.)

Conjecture (Kalai): $\lim_{m\to\infty} \frac{\# \text{ nbrly } (n-1)\text{-spheres on } m \text{ vertices}}{\# (n-1)\text{-spheres on } m \text{ vertices}} = 1$ for $n \ge 4$.

Definition

k[K] being componentwise almost linear (CAL) is defined similarly and is equivalent to the minimal free resolution F_{\bullet} satisfying

 $H_i(\operatorname{lin}(F_{\bullet})) = 0$ for $1 < i < \operatorname{proj} \dim k[K]$.

Examples:

- All Gorenstein complexes with almost linear resolution
- Boundary complexes of stacked polytopes
- Connected sums of above examples

Definition

k[K] being componentwise almost linear (CAL) is defined similarly and is equivalent to the minimal free resolution F_{\bullet} satisfying

 $H_i(\operatorname{lin}(F_{\bullet})) = 0$ for $1 < i < \operatorname{proj} \dim k[K]$.

Examples:

- All Gorenstein complexes with almost linear resolution
- Boundary complexes of stacked polytopes
- Connected sums of above examples

Theorem (A.-Briggs)

If K is a Gorenstein complex which is CAL, then

 $\mathcal{Z}_{K} \simeq_{\mathbb{Q}} \text{ connected sum of sphere products}$ $\Omega \mathcal{Z}_{K} \simeq \text{ product of loops of spheres.}$ $H^*(\mathcal{Z}_K)$ for $K = \bigcirc$

THANK YOU!