Homotopy types of moment-angle complexes associated to almost linear resolutions

> Steven Amelotte (joint with Ben Briggs)

Workshop on Polyhedral Products Fields Institute July 30, 2024

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

• the Stanley–Reisner ring $k[K] = S/I_K$,

$$
S = k[v_1, ..., v_m], \ |v_i| = 2, \quad l_K = (v_{i_1} \cdots v_{i_r} \mid \{i_1, ..., i_r\} \notin K)
$$

Definitions/notation

To a simplicial complex K on $[m] = \{1, \ldots, m\}$ we associate:

• the Stanley–Reisner ring $k[K] = S/I_K$,

$$
S = k[v_1, ..., v_m], \, |v_i| = 2, \quad l_K = (v_{i_1} \cdots v_{i_r} \mid \{i_1, ..., i_r\} \notin K)
$$

- **the moment-angle complex, the Davis-Januszkiewicz space** $\mathcal{Z}_\mathcal{K} = (D^2, S^1)$ K $DJ_K = (\mathbb{C}P^{\infty}, *)^K$
- the homotopy fibration

$$
\mathcal{Z}_K \xrightarrow{\omega} DJ_K \hookrightarrow BT^m.
$$

- Hard problem: Determine the homotopy type of \mathcal{Z}_K from the combinatorics of K.
- **Equivalent problem:** Determine the homotopy type of Z_K from the \bullet Stanley–Reisner ring $k[K]$.
- **Easier(?) problem:** Determine the homotopy type of \mathcal{Z}_K from the minimal free resolution of $k[K]$.

$$
F_p \xrightarrow{\partial_p} \cdots \to F_1 \xrightarrow{\partial_1} F_0 \to k[K] \to 0
$$

 $\mathcal{F}_i = \bigoplus \mathcal{S}(-j)^{\beta_{i,j}}, \qquad \mathsf{rank}(\mathcal{F}_i) = \beta_i = \dim_k \mathsf{Tor}_i^\mathcal{S}(k[K], k)$

- Hard problem: Determine the homotopy type of \mathcal{Z}_K from the combinatorics of K.
- **Equivalent problem:** Determine the homotopy type of \mathcal{Z}_K from the Stanley–Reisner ring $k[K]$.
- **Easier(?) problem:** Determine the homotopy type of \mathcal{Z}_K from the minimal free resolution of $k[K]$.

$$
F_p \xrightarrow{\partial_p} \cdots \rightarrow F_1 \xrightarrow{\partial_1} F_0 \rightarrow k[K] \rightarrow 0
$$

 $\mathcal{F}_i = \bigoplus \mathcal{S}(-j)^{\beta_{i,j}}, \qquad \mathsf{rank}(\mathcal{F}_i) = \beta_i = \dim_k \mathsf{Tor}_i^\mathcal{S}(k[K], k)$

- Hard problem: Determine the homotopy type of \mathcal{Z}_K from the combinatorics of K.
- Equivalent problem: Determine the homotopy type of \mathcal{Z}_K from the Stanley–Reisner ring $k[K]$.
- Easier(?) problem: Determine the homotopy type of \mathcal{Z}_K from the minimal free resolution of $k[K]$.

$$
F_p \xrightarrow{\partial_p} \cdots \rightarrow F_1 \xrightarrow{\partial_1} F_0 \rightarrow k[K] \rightarrow 0
$$

$$
F_i = \bigoplus_{j \in \mathbb{Z}} S(-j)^{\beta_{i,j}}, \qquad \text{rank}(F_i) = \beta_i = \dim_k \text{Tor}_i^S(k[K], k)
$$

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_K) \cong \operatorname{Tor}_*^{\mathcal{S}}(k[K],k)$ \cong \bigoplus $\widetilde{H}^*(K_J)$. ←Hochster's formula $J\subseteq[m]$

This gives a topological interpretation of the modules appearing in the minimal free resolution F_{\bullet} of $k[K]$.

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K],k)$ is a Poincaré duality alg. ⇔ K is Gorenstein.

Cai (2017): Z_K is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_K) \cong \operatorname{Tor}_*^{\mathcal{S}}(k[K],k)$ \cong \bigoplus $\widetilde{H}^*(K_J)$. ←Hochster's formula $J\subseteq[m]$

This gives a topological interpretation of the modules appearing in the minimal free resolution F_{\bullet} of $k[K]$.

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K],k)$ is a Poincaré duality alg. \Leftrightarrow K is Gorenstein.

Cai (2017): Z_K is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology of moment-angle complexes

Theorem (Baskakov–Buchstaber–Panov, Franz)

There are natural (in K) isomorphisms of graded algebras

 $H^*(\mathcal{Z}_K) \cong \operatorname{Tor}_*^{\mathcal{S}}(k[K],k)$ \cong \bigoplus $\widetilde{H}^*(K_J)$. ←Hochster's formula $J\subseteq[m]$

This gives a topological interpretation of the modules appearing in the minimal free resolution F_{\bullet} of $k[K]$.

Avramov–Golod (1971): $\operatorname{Tor}_*^S(k[K],k)$ is a Poincaré duality alg. \Leftrightarrow K is Gorenstein.

Cai (2017): Z_K is a manifold $\Leftrightarrow K$ is Gorenstein.

• What about the differentials?

Cohomology operations

Let $\Lambda = \Lambda(\iota_1,\ldots,\iota_m)$, $|\iota_j| = -1$.

 $T^m \curvearrowright \mathcal{Z}_K$ induces derivations $\iota_j \colon H^*(\mathcal{Z}_K) \to H^{*-1}(\mathcal{Z}_K)$

$$
S_j^1 \times \mathcal{Z}_K \longrightarrow \mathcal{Z}_K
$$

\n
$$
H^*(\mathcal{Z}_K) \longrightarrow \Lambda(u) \otimes H^*(\mathcal{Z}_K)
$$

\n
$$
\alpha \longmapsto 1 \otimes \alpha + u \otimes \iota_j(\alpha)
$$

making $H^*(\mathcal{Z}_\mathsf{K})$ a graded Λ-module.

Cohomology operations

Let $\Lambda = \Lambda(\iota_1,\ldots,\iota_m)$, $|\iota_j| = -1$.

 $T^m \curvearrowright \mathcal{Z}_K$ induces derivations $\iota_j \colon H^*(\mathcal{Z}_K) \to H^{*-1}(\mathcal{Z}_K)$

$$
S_j^1 \times \mathcal{Z}_K \longrightarrow \mathcal{Z}_K
$$

\n
$$
H^*(\mathcal{Z}_K) \longrightarrow \Lambda(u) \otimes H^*(\mathcal{Z}_K)
$$

\n
$$
\alpha \longrightarrow 1 \otimes \alpha + u \otimes \iota_j(\alpha)
$$

making $H^*(\mathcal{Z}_\mathsf{K})$ a graded Λ-module.

• Define a dg A-module structure on the *reduced Koszul complex*

$$
R^*(K) := (k[K] \otimes \Lambda(u_1,\ldots,u_m))/(v_i^2,v_iu_i), \quad du_i=v_i
$$

by letting each ι_j act by the graded derivation $\frac{\partial}{\partial u_j}$:

$$
\iota_j(v_i)=0, \qquad \iota_j(u_i)=\begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j. \end{cases}
$$

Cohomology operations

Proposition (A.–Briggs)

• There is a natural (in K) isomorphism of dg Λ -modules

$$
C^*_{cw}(\mathcal{Z}_K)\cong R^*(K).
$$

Therefore $H^*(\mathcal{Z}_\mathcal{K})\cong \mathrm{Tor}_*^{\mathcal{S}}(k[\mathcal{K}],k)$ as graded Λ-modules.

• There are commutative diagrams

$$
H^{n}(\mathcal{Z}_{K}) \xrightarrow{\cong} \bigoplus_{J \subseteq [m]} \widetilde{H}^{n-|J|-1}(K_{J})
$$

$$
\downarrow^{i_{j}}
$$

$$
H^{n-1}(\mathcal{Z}_{K}) \xrightarrow{\cong} \bigoplus_{J \subseteq [m]} \widetilde{H}^{n-|J|-2}(K_{J})
$$

where the right vertical map is induced by inclusions $\mathsf{K}_{\mathcal{J}\setminus \{j\}} \hookrightarrow \mathcal{K}_{\mathcal{J}}.$

Cohomology operations $\Lambda(\iota_1,\ldots,\iota_m)\otimes H^*(\mathcal{Z}_K)\to H^*(\mathcal{Z}_K)$

• $\Lambda(\iota_1,\ldots,\iota_m)$ embeds into an algebra of *higher cohomology* operations induced by the T^m -action (in the sense of GKM):

$$
\delta_{\mathfrak{s}}\colon H^*(X)\to H^{*-2\deg \mathfrak{s}+1}(X)
$$

for each monomial $s \in S = k[v_1, \ldots, v_m]$ (where $\delta_{v_i} = \iota_i$).

Cohomology operations $\Lambda(\iota_1,\ldots,\iota_m)\otimes H^*(\mathcal{Z}_K)\to H^*(\mathcal{Z}_K)$

 \bullet $\Lambda(\iota_1,\ldots,\iota_m)$ embeds into an algebra of *higher cohomology* operations induced by the T^m -action (in the sense of GKM):

$$
\delta_{\mathfrak{s}}\colon H^*(X)\to H^{*-2\deg \mathfrak{s}+1}(X)
$$

for each monomial $s \in S = k[v_1, \ldots, v_m]$ (where $\delta_{v_i} = \iota_i$).

Theorem (A.–Briggs)

The cohomology operations $\delta_{\rm s}$ assemble into a differential

$$
\delta = \sum_{\substack{\mathsf{sq-free} \\ \mathsf{monomials}}} \mathsf{s} \otimes \delta_{\mathsf{s}} = \sum_{\mathsf{U} \subseteq [m]} \mathsf{v}_{\mathsf{U}} \otimes \delta_{\mathsf{U}}
$$

making $\bigl(S\otimes H^*(\mathcal{Z}_\mathcal{K}),\delta\bigr)$ the minimal free resolution of $k[\mathcal{K}].$

 $H^*(\mathcal{Z}_K)$ as $\Lambda(\iota_1,\ldots,\iota_m)$ -module \leftrightsquigarrow linear part of the resolution

There is a hierarchy of families of simplicial complexes:

 $\mathsf{shifted} \;\subset \;\; \begin{array}{rcl} \mathsf{vertex}\mathsf{-} \ \mathsf{S} \ \mathsf{cellable} \ \subset \ \mathsf{Cohen}\mathsf{-Macau} \end{array}$ Cohen–Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto) If the dual of K belongs to one of the classes above, then \mathcal{Z}_K is homotopy equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial complexes in terms of the minimal free resolution of $k[K]$:

K is dual Cohen–Macaulay if and only if $k[K]$ has a linear resolution.

There is a hierarchy of families of simplicial complexes:

 $\mathsf{shifted} \;\subset \;\; \begin{array}{rcl} \mathsf{vertex}\mathsf{-} \ \mathsf{S} \ \mathsf{cellable} \ \subset \ \mathsf{Cohen}\mathsf{-Macau} \end{array}$ Cohen–Macaulay

Theorem (Grbić–Theriault, Welker–Grujić, Iriye–Kishimoto)

If the dual of K belongs to one of the classes above, then \mathcal{Z}_K is homotopy equivalent to a wedge of spheres.

A classical result in commutative algebra characterizes these simplicial complexes in terms of the minimal free resolution of $k[K]$:

Theorem (Eagon–Reiner, 1998)

K is dual Cohen–Macaulay if and only if $k[K]$ has a linear resolution.

"sweep action" $T^m \curvearrowright \mathcal{Z}_K$ $\Lambda(\lambda_1,\ldots,\lambda_m)\otimes H_*(\mathcal{Z}_K)\to H_*(\mathcal{Z}_K)$

Theorem (A.–Briggs)

If $f \in \pi_n(\mathcal{Z}_K)$ has Hurewicz image $h(f) \in H_n(\mathcal{Z}_K)$, then

$$
\lambda_i h(f) = h([\overline{\mu_i, \omega \circ f}]) \in H_{n+1}(\mathcal{Z}_K)
$$

where $[\mu_i,\omega\circ f]$ is the lift of the Whitehead prod. $[\mu_i,\omega\circ f]\in \pi_{n+1}(DJ_{\mathsf{K}})$. In particular, the Hurewicz image of \mathcal{Z}_K is closed under the sweep action.

Corollary

For any simplicial complex K, the image of the Hurewicz map

$$
h\colon \pi_*(\mathcal{Z}_K)\longrightarrow H_*(\mathcal{Z}_K)
$$

contains the linear strand of $k[K]$, i.e., the $\Lambda(\lambda_1,\ldots,\lambda_m)$ -submodule of $H_*(\mathcal{Z}_K) \cong \text{Ext}_{\mathcal{S}}(k[K], k)$ generated by $\text{Ext}^1_{\mathcal{S}}(k[K], k)$.

Fact: $X \simeq \bigvee_i S^{n_i} \Leftrightarrow h: \pi_*(X) \to H_*(X)$ is surjective.

Corollary

For any simplicial complex K, the image of the Hurewicz map

$$
h\colon \pi_*(\mathcal{Z}_K)\longrightarrow H_*(\mathcal{Z}_K)
$$

contains the linear strand of $k[K]$, i.e., the $\Lambda(\lambda_1,\ldots,\lambda_m)$ -submodule of $H_*(\mathcal{Z}_K) \cong \text{Ext}_{\mathcal{S}}(k[K], k)$ generated by $\text{Ext}^1_{\mathcal{S}}(k[K], k)$.

Fact: $X \simeq \bigvee_i S^{n_i} \Leftrightarrow h: \pi_*(X) \to H_*(X)$ is surjective.

Corollary

If k[K] has a linear resolution over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Corollary

If k[K] is dual seq. Cohen–Macaulay over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus **Herzog–Hibi (1999):** K is seq. dual Cohen–Macaulay iff $k[K]$ has componentwise linear resolution.

Corollary

If k[K] is dual seq. Cohen–Macaulay over $k = \mathbb{Z}$ (resp. \mathbb{Z}/p), then \mathcal{Z}_K has the homotopy type (resp. p-local homotopy type) of a wedge of spheres.

Proof.

Use Corollary above plus **Herzog–Hibi (1999):** K is seq. dual Cohen–Macaulay iff $k[K]$ has componentwise linear resolution.

Corollary

If K is flag with chordal 1-skeleton, then $\mathcal{Z}_K \simeq$ wedge of spheres.

Proof.

Use Corollary above plus **Fröberg (1990):** K flag with chordal 1-skeleton iff $k[K]$ has a 2-linear resolution.

If $K\neq \partial\Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then $k[K]$ cannot have a linear or componentwise linear resolution.

Definition

k[K] has an almost linear resolution if it has a d-linear resolution for $p-1$ steps, for some d, where $p = \text{proj dim } k[K]$.

If $K\neq \partial\Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then $k[K]$ cannot have a linear or componentwise linear resolution.

Definition

k[K] has an almost linear resolution if it has a d-linear resolution for $p-1$ steps, for some d, where $p = \text{proj dim } k[K]$.

Examples:

- \triangleright Boundary complexes of polygons
- Boundary complexes of cyclic polytopes $C(2n, m)$
- \triangleright Odd-dimensional neighbourly sphere triangulations (An $(n-1)$ -dimensional K is neighbourly if every set of $k \leq \lfloor \frac{n}{2} \rfloor$ vertices is a face of K .)

If $K\neq \partial\Delta^{m-1}$ is a sphere triangulation (or Gorenstein complex), then $k[K]$ cannot have a linear or componentwise linear resolution.

Definition

k[K] has an almost linear resolution if it has a d-linear resolution for $p-1$ steps, for some d, where $p = \text{proj dim } k[K]$.

Examples:

- \triangleright Boundary complexes of polygons
- Boundary complexes of cyclic polytopes $C(2n, m)$
- \triangleright Odd-dimensional neighbourly sphere triangulations (An $(n-1)$ -dimensional K is neighbourly if every set of $k \leq \lfloor \frac{n}{2} \rfloor$ vertices is a face of K .)

 $\textsf{Conjecture (Kalai):} \ \lim\limits_{m\rightarrow\infty}$ $\frac{\# \text{ nbrly }(n-1)\text{-spheres on } m \text{ vertices}}{\# (n-1)\text{-spheres on } m \text{ vertices}}=1$ for $n \geqslant 4$.

Definition

 $k[K]$ being componentwise almost linear (CAL) is defined similarly and is equivalent to the minimal free resolution F_{\bullet} satisfying

 $H_i(\text{lin}(F_{\bullet})) = 0$ for $1 < i <$ proj dim $k[K]$.

Examples:

- \triangleright All Gorenstein complexes with almost linear resolution
- \blacktriangleright Boundary complexes of stacked polytopes
- \triangleright Connected sums of above examples

Definition

 $k[K]$ being componentwise almost linear (CAL) is defined similarly and is equivalent to the minimal free resolution F_{\bullet} satisfying

 $H_i(\text{lin}(F_{\bullet})) = 0$ for $1 < i <$ proj dim $k[K]$.

Examples:

- \triangleright All Gorenstein complexes with almost linear resolution
- \blacktriangleright Boundary complexes of stacked polytopes
- \triangleright Connected sums of above examples

Theorem (A.–Briggs)

If K is a Gorenstein complex which is CAL, then

 $\mathcal{Z}_K \simeq_{\mathbb{O}}$ connected sum of sphere products $\Omega \mathcal{Z}_K \simeq$ product of loops of spheres.

 $H^*(\mathcal{Z}_K)$ for $K = \bigcirc$

THANK YOU!