Golod and tight manifold triangulations

Daisuke Kishimoto

Based on joint work with Kouyemon Iriye

Toronto; July 2024

- 1. Golod complex
- 2. Tight complex
- 3. Main result

1. Golod complex

Golodness

- *•* Let F be a field.
- Let $S = \mathbb{F}[x_1, \ldots, x_n]$, where $|x_i| = 2$.
- Let $R = S/I$, where *I* is a homogeneous ideal with $I \subset (x_1, \ldots, x_n)^2$.

Proposition

There is a coefficient-wise inequality

$$
P(\operatorname{\mathsf{Tor}}^R(\mathbb{F},\mathbb{F});t)\leq \frac{(1+t^2)^n}{1-t(P(\operatorname{\mathsf{Tor}}^S(R,\mathbb{F});t)-1)}
$$

where $P(V; t)$ *denotes the Poincaré series of a graded vector space* V .

Golodness

- *•* Let F be a field.
- Let $S = \mathbb{F}[x_1, \ldots, x_n]$, where $|x_i| = 2$.
- Let $R = S/I$, where *I* is a homogeneous ideal with $I \subset (x_1, \ldots, x_n)^2$.

Proposition

There is a coefficient-wise inequality

$$
P(\operatorname{Tor}^R(\mathbb{F},\mathbb{F});\,t)\leq \frac{(1+t^2)^n}{1-t(P(\operatorname{Tor}^S(R,\mathbb{F});\,t)-1)}
$$

where $P(V; t)$ *denotes the Poincaré series of a graded vector space* V.

Definition

We say that *R* is Golod if the equality holds.

Koszul homology

- *•* Let K(*R*) denote the Koszul complex of *R* (with respect to the presentation $R = S/I$).
- *•* There is an isomorphism *^H∗*(K(*R*)) *[∼]*⁼ Tor*^S* (*R,* F).

Theorem (Golod '62)

The ring R is Golod if and only if all products and (higher) Massey products in H∗(K(*R*)) *vanish.*

Stanley-Reisner ring

• Let *K* be a simplicial complex with vertex set $[m] = \{1, 2, \ldots, m\}$.

Definition

The Stanley-Reisner ring of K over $\mathbb F$ is defined by

$$
\mathbb{F}[K] = \mathbb{F}[x_1,\ldots,x_m]/(x_{i_1}\cdots x_{i_k} | \{i_1,\ldots,i_k\} \notin K)
$$

where $|x_i|=2$.

Stanley-Reisner ring

• Let *K* be a simplicial complex with vertex set $[m] = \{1, 2, \ldots, m\}$.

Definition

The Stanley-Reisner ring of K over $\mathbb F$ is defined by

$$
\mathbb{F}[K] = \mathbb{F}[x_1,\ldots,x_m]/(x_{i_1}\cdots x_{i_k} | \{i_1,\ldots,i_k\} \notin K)
$$

where $|x_i|=2$.

Problem

Given a property of noetherian ring, find a characterization of it for F[*K*] *in terms of K.*

Golod complex

Definition

A simplicial complex *K* is $\mathbb{F}\text{-}$ Golod if $\mathbb{F}[K]$ is Golod.

Example

The Alexander dual of a Cohen-Macaulay complex is Golod.

Example

The square graph C_4 is not \mathbb{F} -Golod for any field \mathbb{F} as the Koszul homology of $\mathbb{F}[C_4]$ has non-trivial products.

Example

There is a triangulation of $\mathbb{R}P^2$ which is Q-Golod but not \mathbb{F}_2 -Golod.

Golod complex

Definition

A simplicial complex *K* is $\mathbb{F}\text{-}$ Golod if $\mathbb{F}[K]$ is Golod.

Example

The Alexander dual of a Cohen-Macaulay complex is Golod.

Example

The square graph C_4 is not \mathbb{F} -Golod for any field \mathbb{F} as the Koszul homology of $\mathbb{F}[C_4]$ has non-trivial products.

Example

There is a triangulation of $\mathbb{R}P^2$ which is Q-Golod but not \mathbb{F}_2 -Golod.

Problem

Find a combinatorial characterization of F*-Golod complexes.*

Moment-angle complex

Definition

The moment-angle complex for *K* is defined by

$$
Z_K=\bigcup_{\sigma\in K}Z(\sigma),
$$

where $Z(\sigma) = X_1 \times \cdots \times X_m$ such that $X_i = D^2$ for $i \in \sigma$ and $X_i = S^1$ for $i \notin \sigma$.

Moment-angle complex

Definition

The moment-angle complex for *K* is defined by

$$
Z_K=\bigcup_{\sigma\in K}Z(\sigma),
$$

where $Z(\sigma) = X_1 \times \cdots \times X_m$ such that $X_i = D^2$ for $i \in \sigma$ and $X_i = S^1$ for $i \notin \sigma$.

Theorem (Baskakov, Buchstaber, and Panov '04)

The cellular cochain complex of Z^K is homotopy equivalent to the Koszul complex of F[*K*]*.*

Corollary

If Z_K *is a suspension, then K is* \mathbb{F} -*Golod for any field* \mathbb{F} *.*

Fat-wedge filtration

Definition

For $i = 0, 1, ..., m$, let

 $Z_K^i = \{(x_1, \ldots, x_m) \in Z_K \mid \text{at least } m - i \text{ of } x_j \text{ are the basepoint}\}.$

The filtration

$$
* = Z_K^0 \subset Z_K^1 \subset \cdots \subset Z_K^{m-1} \subset Z_K^m = Z_K
$$

is called the fat-wedge filtration.

Fat-wedge filtration

Definition

For $i = 0, 1, \ldots, m$, let

 $Z_K^i = \{(x_1, \ldots, x_m) \in Z_K \mid \text{at least } m - i \text{ of } x_j \text{ are the basepoint}\}.$

The filtration

$$
* = Z_K^0 \subset Z_K^1 \subset \cdots \subset Z_K^{m-1} \subset Z_K^m = Z_K
$$

is called the fat-wedge filtration.

Theorem (Iriye and K '19)

The fat-wedge filtration is a cone decomposition, where the attaching maps are explicitly described in terms of K.

Theorem (Iriye and K '19)

The moment-angle complex Z_K *is a suspension iff the fat-wedge filtration is trivial.* 9 / 27

Desuspending moment-angle complexes

- *•* A sequentially Cohen-Macaulay complex is a generalization of a Cohen-Macaulay complex.
- *•* A totally homology fillable complex is a generalization of the Alexander dual of a sequentially Cohen-Macaulay complex.

Theorem (Iriye and K '19)

If K is a totally homology fillable complex, then Z_K is a suspension.

Desuspending moment-angle complexes

- *•* A sequentially Cohen-Macaulay complex is a generalization of a Cohen-Macaulay complex.
- *•* A totally homology fillable complex is a generalization of the Alexander dual of a sequentially Cohen-Macaulay complex.

Theorem (Iriye and K '19)

If K is a totally homology fillable complex, then Z_K is a suspension.

• We say that *K* is *k*-neighborly if any *σ ⊂* [*m*] with *|σ|* = *k* + 1 is a simplex of *K*.

Theorem (Iriye and K '19)

If K *is* $\frac{\dim K}{2}$ $\frac{nK}{2}$]-neighborly, then Z_K is a suspension.

Theorem

If K is a graph, then TFAE:

- 1. *K is Golod;*
- 2. *K is chordal, that is, minimal cycles in K are triangles;*

3. *Z^K is a suspension.*

Corollary

A triangulation of a circle is minimal if and only if it is a triangle which is the minimal triangulation.

Theorem (Iriye and K '18)

If K is a triangulation of a closed F*-oriented surface, then TFAE:*

- 1. *K is Golod;*
- 2. *K is* 1*-neighborly;*
- 3. *Z^K is a suspension.*

Remark

- 1. Most 1-neighborly triangulation of surfaces are minimal, so in most cases, triangulations of a surface is Golod if and only if it is minimal.
- 2. General 2-dimensional Golod complexes are characterized by 1-neighborliness and other condition.

Theorem (Iriye and K '18)

If K is a triangulation of a closed F*-oriented surface, then TFAE:*

- 1. *K is Golod;*
- 2. *K is* 1*-neighborly;*
- 3. *Z^K is a suspension.*

Remark

- 1. Most 1-neighborly triangulation of surfaces are minimal, so in most cases, triangulations of a surface is Golod if and only if it is minimal.
- 2. General 2-dimensional Golod complexes are characterized by 1-neighborliness and other condition.

Question

Is Golodness of manifold triangulations related to minimal triangulations?

2. Tight complex

Tight embedding

• Let *M* be a closed connected manifold.

Theorem (Chern and Lashof '57)

The total absolute curvature of an embedding $M \to \mathbb{R}^N$ *is bounded below by the number of critical point of some Morse function on M.*

Corollary

The total absolute curvature of an embedding $M \to \mathbb{R}^N$ *is bounded below by the sum of the Betti numbers of M.*

Definition

We say that an embedding $M\to \mathbb{R}^N$ is $\mathbb{F}\text{-tight}$ if its total absolute curvature equals the sum of the Betti numbers of *M* over F.

Theorem

An embedding $f\colon M\to \mathbb{R}^N$ is $\mathbb{F}\text{-}$ tight if and only if the natural map

 $H_*(f(M) \cap \mathbb{F}) \to H_*(f(M); \mathbb{F})$

is injective for almost all half spaces H.

Tight complex

• The full subcomplex of *K* over *∅ ̸*= *I ⊂* [*m*] is defined by

$$
K_I = \{\sigma \in K \mid \sigma \subset I\}.
$$

Definition

A connected simplicial complex K is called \mathbb{F} -tight if the natural map

$$
H_*(K_I;\mathbb{F})\to H_*(K;\mathbb{F})
$$

is injective for all *∅ ̸*= *I ⊂* [*m*].

Example

Observe that if K is \mathbb{F} -tight, then it is 1-neighborly. Hence a triangulation of a circle is $\mathbb F$ -tight if and only if it is a triangle graph.

Minimal triangulation

Definition

A triangulation *K* of a space *X* is strongly minimal if for any *k*, it has less or equal *k*-simplices than any other triangulations of *X*.

Conjecture (Kühnel and Lutz '99)

Every F-tight manifold triangulation is strongly minimal.

Remark

The conjecture was verified by Kühnel and Lutz '99 in dimension 2 and by Baguchi, Datta, and Spreer '17 in dimension 3.

Minimal triangulation

Definition

A triangulation *K* of a space *X* is strongly minimal if for any *k*, it has less or equal *k*-simplices than any other triangulations of *X*.

Conjecture (Kühnel and Lutz '99)

Every F-tight manifold triangulation is strongly minimal.

Remark

The conjecture was verified by Kühnel and Lutz '99 in dimension 2 and by Baguchi, Datta, and Spreer '17 in dimension 3.

Question

Is there a relation between Golodness and tightness for manifold triangulations?

Tight-neighborly manifold triangulation

Definition

A *d*-manifold triangulation *K* is called tight-neighborly if

$$
\binom{m-d-1}{2}=\binom{d+2}{2}b_1(K;\mathbb{F}).
$$

Remark

Tight-neighborliness does not depend on the ground field \mathbb{F} , and is much easier to check than tightness.

Proposition

Tight-neighborly manifold triangulations are vertex minimal.

Theorem (Bagchi, Datta and Spreer '17)

For a d-manifold triangulation K with d ≥ 3*, we consider the conditions:*

- 1. *K is* F*-tight;*
- 2. *K is tight-neighborly;*

Then 1 *implies* 2*. Moreover, if* $d = 3$ *, then* 2 *implies* 1*.*

Theorem (K and Iriye '23)

Let K be a triangulation of an F*-oriented d-manifold with d ≥* 3*, and consider the conditions:*

- 1. *K is* F*-Golod;*
- 2. *K is* F*-tight;*
- 3. *K is tight-neighborly;*
- 4. *Z^K is a suspension.*

Then there are implications

$$
1 \quad \Longrightarrow \quad 2 \quad \Longleftarrow \quad 3 \quad \Longrightarrow \quad 4 \quad \Longrightarrow \quad 1.
$$

Moreover if $d = 3$, then

$$
2 \quad \Longrightarrow \quad 3
$$

so all conditions are equivalent.

Golod and tight manifold triangulations

Question

Are Golodness and tightness equivalent for manifold triangulations?

Golod and tight manifold triangulations Question

Are Golodness and tightness equivalent for manifold triangulations?

• K is weakly F-Golod if products in the Koszul homology of F[*K*] vanish.

Proposition (Iriye and K '23)

Let K be a triangulation of an F*-oriented manifold. If K is weakly* F*-Golod, then it is* F*-tight.*

Remark

In dim *≤* 3, all (higher) Massey products in the Koszul homology of F[*K*] are trivial, but in dim \geq 4, there may be nontrivial ones.

Remark

There is a simplicial complex which is weakly F-Golod but not F-Golod $(K$ atthän $'17$).

3. Main result

Main result

Theorem

If K is an F*-tight complex, then it is an* F*-Golod complex.*

Main result

Theorem

If K is an F*-tight complex, then it is an* F*-Golod complex.*

Corollary

Let K be a triangulation of an F*-orientable manifold. Then K is* F*-Golod if and only if it is* F*-tight.*

Corollary

Let K be a triangulation of an F*-orientable manifold. Then K is* F*-Golod if and only if it is weakly* F*-Golod.*

The dga $\mathcal{C}^*(K)$

Definition

We define the dga $\mathfrak{C}^*(\mathcal{K})$ by $\mathfrak{C}^0(\mathcal{K})=\mathbb{F}$ and

$$
\mathcal{C}^p(K)=\bigoplus_{\emptyset\neq I\subset [m]}\widetilde{C}^{p-|I|-1}(K_I)
$$

for *p >* 0 such that the differential is induced from those of *C ∗* (*KI*) and the product is given by

$$
\widetilde{C}^{p-|I|-1}(K_I)\otimes \widetilde{C}^{q-|J|-1}(K_I)\rightarrow \widetilde{C}^{p+q-|I\cup J|-1}(K_{I\cup J})
$$

for *I* ∩ *J* = \emptyset which is induced from the inclusion $K_{I \cup J}$ → $K_I * K_J$.

Remark

The dga $\mathfrak{C}^*(\mathcal{K})$ is motivated by the cellular cochain complex of $Z_{\mathcal{K}}.$

Proposition

The dga $C^*(K)$ *is homotopy equivalent to the Koszul complex of* $\mathbb{F}[K]$ *.*

- Then we need to show that if *K* is F-tight, then all (higher) Massey products and products in $H^*(\mathcal{C}^*(K))$ vanish.
- *•* To this end, we need to consider higher homotopies among simplicial complexes.

Higher prism operator

- *•* We may choose a total order on the vertex set of a simplicial complexe.
- *•* Then for simplicial complexes *K* and *L*, we can define a simplicial complex $K \otimes L$ which triangulates $|K| \times |L|$.

Theorem

Given a simplicial map $H: K \otimes \Delta^q \rightarrow L$, there is a map

$$
P_H\colon C^*(L)\to C^{*-q}(K)
$$

satisfying

$$
\partial P_H + (-1)^{q-1} P_H \partial = \sum_{i=0}^q (-1)^i P_{H \circ (1 \otimes d^i)}
$$

where d i : ∆*q−*¹ *→* ∆*^q denotes the i-th coface operator.*

- *•* The higher prism operator *P^H* is defined by counting all lattice paths.
- If $q = 0$, then $P_H = H$.
- If $q = 1$, then P_H is the usual prism operator as

$$
\partial P_H + P_H \partial = P_{H \circ (1 \otimes d^0)} - P_{H \circ (1 \otimes d^1)}
$$

= $H|_{K \otimes 1} - H|_{K \otimes 0}$.

- *•* The proof of the main theorem is done by applying higher prism operators to the complex $\mathcal{C}^*(\mathcal{K}).$
- *•* Tightness is used to lift a cocycle in $C^*(K_I) \subset \mathcal{C}^*(K)$ to that in *C*e*∗* (*K*), which proves that products in *H ∗* (C *∗* (*K*)) vanich.
- *•* The higher prism operator *P^H* is defined by counting all lattice paths.
- If $q = 0$, then $P_H = H$.
- If $q = 1$, then P_H is the usual prism operator as

$$
\partial P_H + P_H \partial = P_{H \circ (1 \otimes d^0)} - P_{H \circ (1 \otimes d^1)}
$$

= $H|_{K \otimes 1} - H|_{K \otimes 0}$.

- *•* The proof of the main theorem is done by applying higher prism operators to the complex $\mathcal{C}^*(\mathcal{K}).$
- *•* Tightness is used to lift a cocycle in $C^*(K_I) \subset \mathcal{C}^*(K)$ to that in *C*e*∗* (*K*), which proves that products in *H ∗* (C *∗* (*K*)) vanich.

Thank you!