


Geometric quantization of toric manifolds

Quantization

In the previous lecture we reviewed how a toric manifold is obtained as a

symplectic quotient of a linear action of a torus on a vector space. The main

result in this lecture is the proof that the integer lattice points in the image of the

moment map are in bijective correspondence with the holomorphic sections of the

prequantum line bundle. This construction is due to Susan Tolman. I refer to the

exposition by Mark Hamilton [Hamilton].

Let

∆ = {x ∈ Rn| < x, vj >≥ λj , 1 ≤ j ≤ N}.

Define a map π : RN → Rn by Also π(ej) = vj where vj are N vectors in Rn.

π : ZN → Zn.

So defining T = R/Z, we get π : TN → Tn and let K = Ker(π) and i : K → TN .

We also use i : k → RN and i∗ := L : (RN )∗ → k∗. Let ν ∈ k∗ be a regular value

of the moment map for the K action.

Claim 1: π∗ − λ is a bijective map from ∆ to ∆′ where ∆′ = L−1(ν) ∩ (R+)
N so

that the integer lattice points in ∆ correspond to ∆′ ∩ (Z+)
N .



Proof:

π∗ − λ maps Zn into ZN . So if a point of ∆′ has integer coefficients, then it is in

the image of π∗ − λ of a point in Zn. To see this, we need to show that if

π∗(x) = y ∈ ZN then x ∈ Zn.



This boils down to

< (π∗ − λ)(x), vj > ≥ 0 ∀j = 1, . . . , N

iff

< x, vj > ≥ λj ∀j = 1, . . . , N

which is the condition for x to be in ∆. Since π∗ −λ is an affine injection from Rn

into RN , it is a bijection onto its image, so onto the image of (π∗ − λ) ∩ (R+)
N .

The map π∗ can be written y = V x where y ∈ RN and x ∈ Rn and V is the

N × n matrix whose rows are the vectors vj .

• n of the vj corresponding to one vertex of the moment polytope form a Z basis

of Zn . WLOG suppose v1, . . . , vn form such a basis.

Let V by the n× n matrix whose rows are v1, . . . , vn.

So y = V x defines y1, . . . , yn from the x (where the column vector Y is the

transpose vector of (y1, . . . , yn).

Let V̄ be the n× n matrix whose rows are v1, . . . , vn so that Y = V̄ x defines

y1, . . . , yn from the x where Y is the column vector of y1, . . . , yn. If v1, . . . , vn

form a Z basis for Zn, the determinant of V̄ is ±1, so V̄ is invertible and its

inverse has integer entries.

• So given a Y with integer entries, x = V̄ −1Y will also have integer entries, and



so integer lattice points in the image of π∗ come from integer points in Rn.



Complex construction:

Let Fj be the facets of ∆.

• Define a family F of subsets of ∆ by

∅ ∈ F

and I ∈ F if and only if

∩i∈IFi 6= ∅.

• Define the zero-index set of a point z ∈ CN by

Iz = {j|zj = 0}.

Define UF by the set of z ∈ CN whose zero-index sets are in F .

Note that M is prequantizable if λ is in ZN .

Also the prequantum line bundle of M = UF/KC is

L = UF ×KC
C.

Here KC acts on C with the weight ν = L(−λ).

Theorem: The dimension of the space of holomorphic sections of the

prequantum line bundle is the number of integer lattice points in ∆.



Proof: A holomorphic section is a KC-equivariant holomorphic function

s : UF → C.

Since CN \ UF is the union of submanifolds of codimension greater than or equal

to 2, s extends to a holomorphic function on CN (by Hartogs’ theorem).

So we want to count the KC-equivariant holomorphic functions s : CN → C

where KC acts on C by weight ν and the action on CN is via the inclusion

i : KC → TN
C

and the standard action of TN
C

on CN .

Write such a s as its Taylor series:

s =
∑

I∈Z+

N

aIz
I .

Consider each term zI separately.



(2) Action of TN

(t · z)I = tIzI for t ∈ TN
C
.

Let k ∈ KC, and recall that ν ∈ Hom(K,U(1)) = Hom(KC,C
∗) is a weight. So

kν ∈ C∗.

s(k · z) = k · s(z) But also k · s(z) = kνzI .

So s(k · z) = k · s(z) whenever i∗(I) = ν or L(I) = ν.

So a basis for the equivariant sections is (Z+)
N ∩ L−1(ν), which corresponds

precisely to the set of integer lattice points in the moment polytope.



Example:

Let the polytope ∆ be the triangle in R2 with vertices (0, 0), (0,m), (m, 0)

(a right triangle with the edges of length m, m,
√
2m).

The three vectors normal to the edges are (0, 1), (1, 0), (−1,−1).

The λ is (0, 0,−m).

So the map π is the 2× 3 matrix

π(x, y, z) = (y − z, x− z).



The kernel of π is

{(t, t, t)|t ∈ R}.

The map on tori is

(e2πix, e2πiy, e2πiz) : 7→ (e2πi(y−z), e2πi(x−z))

with kernel

{(e2πit, e2πit, e2πit)}.
This is S1 embedded in T 3 as the diagonal subtorus.

π∗(a, b) = (a, b,−a− b).

L = i∗ is L(x, y, z) = x+ y + z.

So

ν = L(−(0, 0,−m)) = m.



So the affine space L−1(ν) is the space {x+ y + z = m} lying in R3.

The intersection with R3 is a triangle which identifies with ∆.

We pull L−1(ν) ∩R3 back under φ : C3 → R3 to give

µ−1(ν) = {z ∈ C3|π(|z1|2 + |z2|2 + |z3|2) = m} ∼= S5.

The integer points in ∆′ are the set

{(z, y, z) ∈ Z3|x, y, z ≥ 0, x+ y + z = m}.

This is in bijective correspondence with

{(x, y) ∈ Z2|x, y ≥ 0, x+ y ≤ m}

This is the set of integer points in ∆.

For the complex construction,

F = {∅, {1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}}

So UF is the set of points in C2 with either 0, 1 or 2 coordinates 0, in other words

UF = C3 \ {0}.



The complex torus is KC = C∗ acting on C3 by the diagonal action.

The quotient of C3 \ {0} by the diagonal action of C∗ is CP 2.

The prequantum line bundle is L = UF ×KC
C where KC acts on C with weight

m.

The sections are

s(z) = (z1)
j1(z2)

j2(z3)
j3 .

s(k · z) = kj1+j2+j3(z1)
j1(z2)

j2(z3)
j3

This equals k · s(z) iff j1 + j2 + j3 = m, in other words (j1, j2, j3) ∈ ∆′.

The number of such points is

(m+ 1) +m+ . . . 1 = m(m+ 1)/2.

So this is the dimension of the quantization.



Danilov’s theorem

Let M be a toric manifold which is obtained as the symplectic quotient of CN by

the action of a torus T = U(1)n.

Theorem (Danilov) The cohomology of M is

H∗(M ;Q) ∼= Q[x1, . . . , xN ]/(I, J).

Here the ideals I and J will be defined below.

Proof (Tolman-Weitsman):

Let G be a torus with Lie algebra . Define

0 → i→ RN π→→ 0



The dual sequence is

0 →∗ π∗

−→ (RN )∗ → i∗−→
∗

→ 0.

The cohomology of a toric manifold M obtained as a symplectic quotient as

above is as follows. Define the ideal J as the image of π∗ in RN ∗
which is a

subset of the polynomial ring on RN . This is

J =
∑

i

αixi

where αi ∈ Im(π∗).

We also define the ideal

I
which is the subset

∏
i∈I xi for all subsets I ⊂ {1, . . . , N} for which the facets of

the moment polytope corresponding to any two i ∈ I do not intersect.



Step 1: The G equivariant cohomology of CN is the quotient of the polynomial

ring on N variables by the ideal J.

Step 2: By the Kirwan surjectivity theorem, the cohomology of a symplectic

quotient of CN at a regular value of the moment map is isomorphic to the

quotient of the equivariant cohomology of CN by the kernel of the Kirwan map

(the restriction map from CN to the zero locus of the moment map).



Define Mξ as the subset where the < φ(m), ξ > is ≤ 0. Define Kξ as the subset of

α ∈ H∗
T (M ;Q) where α vanishes when restricted to Mξ. Define K =

∑
ξ∈Kξ.

Then

0 → K → H∗
T (M ;Q)

κ→ H∗(Mred;Q) → 0.

In other words, K is the kernel of the Kirwan map.

The Kirwan map is the restriction from equivariant cohomology of M to the

equivariant cohomology of a regular level set of the moment map, which is

isomorphic to the ordinary cohomology of the symplectic quotient.



Step 3: The kernel of the Kirwan map is the ideal I which is the subset
∏

i∈I xi

for all subsets I ⊂ {1, · · · , N} for which the facets of the moment polytope

corresponding to any two i in I do not intersect.

It follows that the ordinary cohomology of the quotient is the quotient of the

equivariant cohomology by the kernel of the Kirwan map , which is

Q[x1, . . . , xN ]/ < I, J > . This is Danilov’s result.
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