
Toric varieties arising from 
polygon dissections

Workshop on Toric Topology 
The Fields Institute  
August 22nd, 2024

Seonjeong Park (Jeonju Univ.)



Contents



Contents

Polygon dissections



Contents

Polygon dissections Schröder trees
1 : 1



Contents

Polygon dissections Schröder trees
1 : 1

Etherington



Contents

Polygon dissections Schröder trees
1 : 1

Fano generalized Bott manifolds

Etherington



Contents

Polygon dissections Schröder trees
1 : 1

Fano generalized Bott manifolds

Torus orbit closures in flag varieties

Etherington



Contents

Polygon dissections Schröder trees
1 : 1

Fano generalized Bott manifolds

Torus orbit closures in flag varieties

This talk is based on  the following two papers with some new results. 
• (With Masuda and Lee) Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers (2023) 
• (With Huh) Toric varieties of Schröder type (2022).

Etherington



Etherington’s bijection:  
Polygon dissections and Schröder trees
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for . Then .

(i0, j0) = (0,n + 1) ℰ0(𝖯(iq, jq)) 𝖯(iq, jq) (iq, jq)

q = 0,1,…, k ℰ0(D) =
k

∐
q=0

ℰ0(𝖯(iq, jq))
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There is a one-to-one correspondence between 
the set of polygon dissections of  and the set 

of Schröder trees of  leaves.
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base

D TD

ϕ(v) =
(0,n + 1) if v is the root,
(i − 1,i) if v is the ith leaf in the preorder listing of T,  and
(i, j) if v is an internal vertex whose left-most and right-most

children are labeled by (i, ∙ ) and ( ∙ , j),  respectively.
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1. The base  corresponds to the root, and the diagonals correspond to the non-leaf vertices, not the 
root. 

2. There is a one-to-one correspondence between the small polygons in a dissection  and the non-leaf 
vertices of the Schröder tree . 

3. Each  corresponds to the set of children of the vertex  in . 

4. There is a one-to-one correspondence between the triangulations of  and the full binary rooted trees 

with  leaves.

(0,n + 1)

D
TD

ℰ0(𝖯(iq, jq)) (iq, jq) TD

𝖯n+2
n + 1
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base

For a polygon dissection  of  with diagonals , we give an order on the diagonals as 
follows: 

    if   (i)    or   (ii)  and .

D 𝖯n+2 (i1, j1), …, (ik, jk)

(i, j) ≺ (i′￼, j′￼) i < i′￼ i = i′￼ j > j′￼

This order corresponds to the 
preorder listing in  a Schröder 
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This order will be used when we construct a toric variety from .D



Construction of a toric variety 
from a polygon dissection
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A toric variety is an algebraic variety containing  as an open dense subset such that the action of   on 

itself extends to the whole variety.

(ℂ*)n (ℂ*)n

Example. 

1.  is a smooth toric variety. 

 

2.  is a projective smooth toric variety. 

 

3. A generalized Bott manifold is a projective smooth toric variety. 

 

Here,  is a -line bundle over .

ℂn

(t1, …, tn) ⋅ (z1, …, zn) = (t1z1, …, tnzn)

ℂPn

(t1, …, tn) ⋅ [z0; z1; …; zn] = [z0; t1z1; …; tnzn]

ℬn → ⋯ → ℬj = ℙ(ℂ ⊕
nj

⨁
k=1

ξj,k) → ℬj−1 → ⋯ → ℬ1 = ℂPn1 → ℬ0 = {a point}

ξj,k ℂ ℬj−1
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We associate  with the polytope  

. 

Then the edge vectors of  generate the lattice .

𝖯n+2

Δ = {(x1, …, xn+1) ∈ ℝn+1 ∣ x1 + ⋯ + xn+1 = n(n + 1)/2, xi ≥ 0 (∀i)}

Δ M = {(x1, . . . , xn+1) ∈ ℤn+1 ∣ x1 + ⋯ + xn+1 = 0}
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The dual lattice  of  can be identified with the quotient lattice  of  through the dot 

product on . Let  ( ) be the quotient image of  in . Then  is a basis 

of  and  by definition.

N M ℤn+1/(1,…,1) ℤn+1

ℤn+1 ϖi i = 0,1,…, n + 1
i

∑
k=1

ek N {ϖ1, …, ϖn}

N ϖ0 = ϖn+1 = 0

We associate  with the polytope  

. 

Then the edge vectors of  generate the lattice .
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The normal facet vectors of  are  for , which corresponds to the side  of 

.

Δ ϖi−1 − ϖi i = 1,…, n + 1 (i − 1,i)
𝖯n+2
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0

1 3

2

4

−ϖ1

ϖ1 − ϖ2 ϖ2 − ϖ3

ϖ3

e1

e2

e3

e4

−ϖ1

ϖ3

ϖ2 − ϖ3

ϖ1 − ϖ2

For , we denote  by the facet whose outward normal vector is .i = 1,…, n + 1 Fi−1,i ϖi−1 − ϖi

F23

F12
F01

F34



Seonjeong Park (Jeonju University) Toric varieties arising from polygon dissections

Toric variety corresponding to a polygon dissection

15

Now we assume .  

• We first blow up  along the subvariety corresponding to the face  of . Denote by 

 the new facet. Note that . 

• Next, we blow up along the subvariety corresponding to the face . Denote by  the 

new facet. Note that . 

• Continuing this process until the last diagonal , we get a smooth toric variety  associated with .

(i1, j1) ≺ ⋯ ≺ (ik, jk)

ℂPn Fi1,i1+1 ∩ ⋯ ∩ Fj1−1,j1 Δ
Fi1,j1 ℰ0(i1j1) = {(i1, i1 + 1), …, ( j1 − 1,j1)}

Fi2,i2+1 ∩ ⋯ ∩ Fj2−1,j2 Fi2,j2
ℰ0(i2 j2) = {(i2, i2 + 1), …, ( j2 − 1,j2)}

(ik, jk) XD D

Note that a blowing up of a smooth projective toric variety becomes a smooth projective toric variety.

We call  a toric variety of Schröder type. When  is a triangulation,  is called a toric variety of Catalan 
type.

XD D XD

We denote by  the polytope obtained from the above process.PD
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A projective smooth variety  is Fano if the anticanonical divisor  is ample.X −KX

Example. 

1.  is Fano. 

2.  is Fano, where  is a tautological line bundle over .

ℂPn

P(ℂ ⊕ γ) γ ℂPn
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A projective smooth variety  is Fano if the anticanonical divisor  is ample.X −KX

Example. 

1.  is Fano. 

2.  is Fano, where  is a tautological line bundle over .

ℂPn

P(ℂ ⊕ γ) γ ℂPn

There is a combinatorial way to determine whether a smooth projective toric variety is Fano.
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A projective smooth variety  is Fano if the anticanonical divisor  is ample.X −KX

Example. 

1.  is Fano. 

2.  is Fano, where  is a tautological line bundle over .

ℂPn

P(ℂ ⊕ γ) γ ℂPn

There is a combinatorial way to determine whether a smooth projective toric variety is Fano.

For a projective fan , a subset  of the primitive ray vectors is called a primitive collection of  if  

    but        for every 

Σ R Σ

Cone(R) ∉ Σ Cone(R∖{u}) ∈ Σ u ∈ R .
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Fano toric variety

17

A projective smooth variety  is Fano if the anticanonical divisor  is ample.X −KX

Example. 

1.  is Fano. 

2.  is Fano, where  is a tautological line bundle over .

ℂPn

P(ℂ ⊕ γ) γ ℂPn

There is a combinatorial way to determine whether a smooth projective toric variety is Fano.

For a projective fan , a subset  of the primitive ray vectors is called a primitive collection of  if  

    but        for every 

Σ R Σ

Cone(R) ∉ Σ Cone(R∖{u}) ∈ Σ u ∈ R .

Note that if  is the normal fan of a polytope , then primitive collections of  correspond to the minimal non-

faces of .

ΣP P ΣP

P
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Batyrev’s criterion

18

For a primitive collection , we get  or there exists a unique cone  such that 

 is in the interior of . That is, 

 

where  are the primitive generators of  and  are positive integers. The above equation is called a 

primitive relation, and we define the degree of a primitive collection  as 

.

R = {u′￼1, …, u′￼ℓ} u′￼1 + ⋯ + u′￼ℓ = 0 σ

u′￼1 + ⋯ + u′￼ℓ σ

u′￼1 + ⋯ + u′￼ℓ = {0,  or 
a1u1 + ⋯ + arur,

u1, …, ur σ a1, …, ar

R

deg R = ℓ − (a1 + ⋯ + ar)

Proposition. (Batyrev 1999) 

A projective toric  variety  is Fano when  for every primitive collection  of .XΣ deg R > 0 R Σ
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 is a Fano generalized Bott manifoldXD
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(Proof) Let  be a polygon dissection of  with diagonals . 

 (1) The polytope  corresponding to  is combinatorially equivalent to . 

(2) The toric variety  is Fano.

D 𝖯n+2 (i1, j1), …, (ik, jk)

PD XD

k

∏
q=0

Δ|ℰ0(𝖯(iq,jq))|−1

XD

Theorem. (Lee-Masuda-P. 2023, Huh-P. 2022)  

The toric variety  constructed from a polygon dissection  is a Fano generalized Bott manifold.XD D
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 is a Fano generalized Bott manifoldXD
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(Proof of (1))  

Let  be a dissection with diagonals . If  is combinatorially equivalent to 

, then a proper subset of  corresponds to a face of  if and only if it does not contain 

any of the following sets 

, and . 

Since  is obtained from  by truncating the face , a subset  of  

corresponds to a face of  if and only if  does not contain  for all . Therefore,  is 

combinatorially equivalent to .

D′￼ (i1, j1), …, (ik−1, jk−1) PD′￼
k−1

∏
p=0

Δ|ℰ0(𝖯(iq,jq))|−1 ℰ0(D′￼) PD′￼

ℰ0(𝖯(i0, j0)), …, ℰ0(𝖯(ik−2, jk−2)) ℰ′￼ = ℰ0(𝖯(ik−1, jk−1)) ∪ ℰ0(𝖯(ik, jk)) − {(ik, jk)}

PD PD′￼
Fik−1,ik−1+1 ∩ ⋯ ∩ Fjk−1−1,jk−1

S ℰ0(D)
PD S ℰ0(𝖯(iq, jq)) q = 0,1,…, k PD

k

∏
p=0

Δ|ℰ0(𝖯(iq,jq))|−1
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 is a Fano generalized Bott manifoldXD
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(Proof of (2): The toric variety  is Fano.)XD

Recall that the facet vector corresponding to  is the vector . For simplicity, we denote it 

by . Set .

(i, j) ∈ ℰ0(D) ϖi − ϖj

uij ui0,j0 = 0

From (1), the primitive collections of the fan  correspond to the edge sets  for .Σ(XD) ℰ0(𝖯(iq, jq)) q = 0,1,…, k

Hence the associated primitive relation is 

.∑
(i,j)∈ℰ0(𝖯(iq,jq))

uij = uiq jq
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 is a Fano generalized Bott manifoldXD

21

(Proof of (2): The toric variety  is Fano.)XD

Recall that the facet vector corresponding to  is the vector . For simplicity, we denote it 

by . Set .

(i, j) ∈ ℰ0(D) ϖi − ϖj

uij ui0,j0 = 0

From (1), the primitive collections of the fan  correspond to the edge sets  for .Σ(XD) ℰ0(𝖯(iq, jq)) q = 0,1,…, k

Hence the associated primitive relation is 

.∑
(i,j)∈ℰ0(𝖯(iq,jq))

uij = uiq jq

The primitive relations of  recovers the Schröder tree .XD TD
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Classify up to isomorphism.

22

Proposition. (Batyrev 1999) 

Two smooth Fano toric varieties  and  are isomorphic as varieties if and only if there is a bijection between 
the sets of rays of  and  inducing a bijection between maximal cones and preserving the primitive relations.

XΣ XΣ′￼

Σ Σ′￼

Theorem. (Lee-Masuda-P. 2023, Huh-P., 2022)  

The toric varieties  and  are isomorphic as varieties if and only if the Schröder trees  and  are 
isomorphic as unordered rooted trees.

XD XD̃ TD TD̃
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Enumeration

23

We can enumerate the number of isomorphism classes of toric varieties arising from dissections of  by 

counting the Schröder trees with  leaves as unordered rooted trees.

𝖯n+2

n

The number of isomorphism 
classes of -dimensional toric 
varieties of Schröder type.

n

The number of isomorphism 
classes of -dimensional toric 
varieties of Catalan type.

n

Wedderburn-Etherington number
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Cohomology ring H*(XD)
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Theorem. (Huh-P., 2022)  

Given a -dissection  of a polygon , consider the 

corresponding Schröder tree . For , let  be the 

th internal vertex in the preorder listing of . For each , 
suppose that  has  children  from left to 

right, and . Then the cohomology ring of  
is  

 

where  

k D 𝖯n+2
TD 1 ≤ i ≤ k vi

i TD i
vi ℓi wi1, wi2, …, wiℓi

ϕ(wiℓi
) = (ai, bi) XD

H*(XD) = ℤ[xa1b1
, xa2b2

, …, xakbk
]/⟨p1, …, pk⟩,

pi := xaibi

ℓi−1

∏
j=1

− ∑
u∈S(wij)

xϕ(u) + ∑
u∈S(vi)

xϕ(u) .

,ℤ[x23, x37, x67, x89]/ℐ

ℐ = ⟨x3
23, x37(−x23 + x37 + x67),

x4
67, x2

89(−x37 − x67 + x89)⟩

where

The cohomology ring  isH*(XD)

D TD
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Cohomological rigidity problem

Theorem. (Huh-P. 2022)  

For , let  and  be -dissection of . Two toric varieties  and  are isomorphic as varieties if and 
only if their integral cohomology rings are isomorphic as graded rings.

k ≤ 3 D D′￼ k 𝖯n+2 XD XD′￼

Conjecture. (Huh-P. 2022)  

Let  and  be -dissection of . Two toric varieties  and  are isomorphic as varieties if and only if 
their integral cohomology rings are isomorphic as graded rings.

D D′￼ k 𝖯n+2 XD XD′￼



Torus orbit closures in flag 
varieties
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Flag variety

27

The flag variety  is the space consisting of all sequences 

, 

where  is a -linear subspace of , , for all 

ℱℓn

V∙ = ({0} ⊊ V1 ⊊ V2 ⊊ ⋯ ⊊ Vn = ℂn)

Vi ℂ ℂn dimℂ Vi = i i = 1,…, n .



Seonjeong Park (Jeonju University) Toric varieties arising from polygon dissections

Flag variety

27
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, 

where  is a -linear subspace of , , for all 

ℱℓn

V∙ = ({0} ⊊ V1 ⊊ V2 ⊊ ⋯ ⊊ Vn = ℂn)

Vi ℂ ℂn dimℂ Vi = i i = 1,…, n .

If  is the set of upper triangular matrices in , then .B GLn(ℂ) ℱℓn = GLn(ℂ)/B
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Flag variety

27

The flag variety  is the space consisting of all sequences 

, 

where  is a -linear subspace of , , for all 

ℱℓn

V∙ = ({0} ⊊ V1 ⊊ V2 ⊊ ⋯ ⊊ Vn = ℂn)

Vi ℂ ℂn dimℂ Vi = i i = 1,…, n .

If  is the set of upper triangular matrices in , then .B GLn(ℂ) ℱℓn = GLn(ℂ)/B

Let  be the set of all permutations on . For  , we let . 

Then  and . (Bruhat decomposition)

𝔖n [n] := {1,2,…, n} w ∈ 𝔖n w := [ew(1) ew(2) ⋯ ew(n)]
GLn(ℂ) = ⨆

w∈𝔖n

BwB ℱℓn = ⨆
w∈𝔖n

BwB/B
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Flag variety

27

The flag variety  is the space consisting of all sequences 

, 

where  is a -linear subspace of , , for all 

ℱℓn

V∙ = ({0} ⊊ V1 ⊊ V2 ⊊ ⋯ ⊊ Vn = ℂn)

Vi ℂ ℂn dimℂ Vi = i i = 1,…, n .

If  is the set of upper triangular matrices in , then .B GLn(ℂ) ℱℓn = GLn(ℂ)/B

Let  be the set of all permutations on . For  , we let . 

Then  and . (Bruhat decomposition)

𝔖n [n] := {1,2,…, n} w ∈ 𝔖n w := [ew(1) ew(2) ⋯ ew(n)]
GLn(ℂ) = ⨆

w∈𝔖n

BwB ℱℓn = ⨆
w∈𝔖n

BwB/B

Note that  and . Here .BwB/B ≅ ℂℓ(w) dimℂ ℱℓn = ℓ(w0) =
n(n − 1)

2
ℓ(w) = #{(i, j) ∣ i < j and w(i) > w( j)}
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Torus action on ℱℓn

28

Let  be the set of diagonal matrices in . Then  acts on  and the -fixed point set is 

.

T GLn(ℂ) T ℱℓn T

{wB = ({0} ⊊ ⟨ew(1)⟩ ⊊ ⟨ew(1), ew(2)⟩ ⊊ ⋯ ⊊ ⟨ew(1), …, ew(n)⟩) ∣ w ∈ 𝔖n}

Here we use a different sign convention to that in Tolman’s talk, that is, a moment map  satisfies the following: For each 

, , where  and  is the vector field on  generated by the one-parameter subgroup .

μ : (M, ω, T ) → Lie(T )*

X ∈ Lie(T ) dμX = ιX#ω μX(p) = ⟨μ(p), X⟩ X# M {exp tX ∣ t ∈ ℝ} ⊂ T

Theorem. (Gelfand-Seranova 1987, Lee-Masuda-P. 2021)  

There is a moment map  sending  to 

+ , 

where  is the Plücker coordinate of . In particular, .

μ : ℱℓn → ℝn xB ∈ ℱℓn

−
n−1

∑
j=1

1
∑i∈Ij,n

|pi |
2 ∑

1∈i∈Ij,n

|pi |
2 , …, ∑

n∈i∈Ij,n

|pi |
2 (n, n, …, n)

(pi)i∈Ij,n
x μ(wB) = (w−1(1), …, w−1(n))
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Toric Richardson variety

29

For each , we define the Schubert variety . When  in Bruhat order, we define the 

Richardson variety . Then .

w ∈ 𝔖n Xw := BwB/B v ≤ w

Xv
w = w0Xw0v ∩ Xw dimℂ Xv

w = ℓ(w) − ℓ(v)
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Toric Richardson variety

29

We say that a Richardson variety   is toric if there is a point  such that .Xv
w x ∈ Xv

w Xv
w = T ⋅ x

For each , we define the Schubert variety . When  in Bruhat order, we define the 

Richardson variety . Then .

w ∈ 𝔖n Xw := BwB/B v ≤ w

Xv
w = w0Xw0v ∩ Xw dimℂ Xv

w = ℓ(w) − ℓ(v)
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Toric Richardson variety

29

It is known that  is a -invariant irreducible subvariety of  and 

.

Xv
w T ℱℓn

(Xv
w)T = {zB ∣ v ≤ z ≤ w}

We say that a Richardson variety   is toric if there is a point  such that .Xv
w x ∈ Xv

w Xv
w = T ⋅ x

For each , we define the Schubert variety . When  in Bruhat order, we define the 

Richardson variety . Then .

w ∈ 𝔖n Xw := BwB/B v ≤ w

Xv
w = w0Xw0v ∩ Xw dimℂ Xv

w = ℓ(w) − ℓ(v)
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Toric Richardson variety

29

It is known that  is a -invariant irreducible subvariety of  and 

.

Xv
w T ℱℓn

(Xv
w)T = {zB ∣ v ≤ z ≤ w}

We say that a Richardson variety   is toric if there is a point  such that .Xv
w x ∈ Xv

w Xv
w = T ⋅ x

For each , we define the Schubert variety . When  in Bruhat order, we define the 

Richardson variety . Then .

w ∈ 𝔖n Xw := BwB/B v ≤ w

Xv
w = w0Xw0v ∩ Xw dimℂ Xv

w = ℓ(w) − ℓ(v)

In particular, the moment map image  is the Bruhat interval polytope 

.

μ(Xv
w)

𝖰v−1

w−1 := ConvHull{(z(1), …, z(n)) ∣ v−1 ≤ z ≤ w−1}
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Toric Richardson variety

29

For example,  is toric, but   is not toric because  for any  and .Xe
213 Xe

321 dimℂ 𝕋 ⋅ x ≤ 2 x ∈ Xe
321 dimℂ Xe

321 = 3

It is known that  is a -invariant irreducible subvariety of  and 

.

Xv
w T ℱℓn

(Xv
w)T = {zB ∣ v ≤ z ≤ w}

We say that a Richardson variety   is toric if there is a point  such that .Xv
w x ∈ Xv

w Xv
w = T ⋅ x

For each , we define the Schubert variety . When  in Bruhat order, we define the 

Richardson variety . Then .

w ∈ 𝔖n Xw := BwB/B v ≤ w

Xv
w = w0Xw0v ∩ Xw dimℂ Xv

w = ℓ(w) − ℓ(v)

In particular, the moment map image  is the Bruhat interval polytope 

.

μ(Xv
w)

𝖰v−1

w−1 := ConvHull{(z(1), …, z(n)) ∣ v−1 ≤ z ≤ w−1}
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Toric varieties arising from polygon triangulations

30

Theorem. (Lee-Masuda-P. 2023)  
Assume that  satisfy  

 or .  

Then the Richardson variety  is a toric variety of Catalan type, and there is a bijective correspondence 

between the set of isomorphism classes of -dimensional toric Richardson varieties of Catalan type and the set 
of unordered full binary trees with  leaves.

v, w ∈ 𝔖n
(v = (1,a2, …, an), w = (a2, …, an,1)) (v = (a1, …, an−1, n), w = (n, a1, …, an−1))

Xv−1

w−1

n
n + 1

That is, every toric variety arising from a triangulation of  is a torus orbit closure in .𝖯n+2 ℱℓn
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Toric varieties arising from polygon triangulations
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Theorem. (Lee-Masuda-P. 2023)  
Assume that  satisfy  

 or .  

Then the Richardson variety  is a toric variety of Catalan type, and there is a bijective correspondence 

between the set of isomorphism classes of -dimensional toric Richardson varieties of Catalan type and the set 
of unordered full binary trees with  leaves.

v, w ∈ 𝔖n
(v = (1,a2, …, an), w = (a2, …, an,1)) (v = (a1, …, an−1, n), w = (n, a1, …, an−1))

Xv−1

w−1

n
n + 1

That is, every toric variety arising from a triangulation of  is a torus orbit closure in .𝖯n+2 ℱℓn

Question. 

Can we realize a toric variety arising from a polygon dissection as a torus orbit closure in a partial flag variety?
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Partial flag variety

31

The partial flag variety  is the space consisting of all sequences 

, 

where  is a -linear subspace of , , for all  Then . 

ℱℓk1,…,km
n

V∙ = ({0} ⊊ Vk1
⊊ Vk2

⊊ ⋯ ⊊ Vkm
= ℂn)

Vki
ℂ ℂn dimℂ Vki

= ki i = 1,…, m . ℱℓ1,2,…,n
n = ℱℓn

There is a natural projection  from  to   which sends .π ℱℓn ℱℓk1,…,km
n (V1 ⊊ ⋯ ⊊ Vn) ↦ (Vk1

⊊ ⋯ ⊊ Vkm
)

Theorem. (Gelfand-Serganova 1987) 

For , the moment map image of  is the Minkowski sum of the polytopes , 

where  is the convex hull of the vectors  for  satisfying .  

Note that  is called the list of .

x ∈ ℱℓk1,…,km
n T ⋅ x −

m−1

∑
i=1

ΔMi
+ (n, …, n)

ΔMi ∑
i∈i

ei i ∈ Ikj,n pi≠0

Lx = ⋃
1≤i≤m−1

{i ∈ Iki,n ∣ pi(x) ≠ 0} x
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Toric varieties arising from polygon dissections

32

Theorem. (P.)  
Let  be a dissection of . Then the toric variety  is a torus orbit closure in , where  

 

in the Schröder tree . Moreover, it is the image of a toric variety of Catalan type via the natural projection 
.

D 𝖯n+2 XD ℱℓk1,…,km
n

ki = #{ leaves of depth  ≤ i − 1} + #{ non-leaf vertices of depth = i − 1}
TD

π : ℱℓn → ℱℓk1,…,km
n

D TD

(k1, k2, k3, k4) = (1,3,4,9)

There is a point  such that the fan of  is the same as that of .x ∈ ℱℓk1,…,km
n T ⋅ x XD
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Toric varieties arising from polygon dissections

33

There is a point  whose list is 

 

          .

x ∈ ℱℓ1,3,4,9
9

{(i) ∣ i ∈ [9]} ∪ {(i,8,9) ∣ i ∈ [6]}

∪ {(i, j,8,9) ∣ i ∈ {1,2,3}, j ∈ {4,5,6,7}}

canonical triangulation
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Toric varieties arising from polygon dissections

33

There is a point  whose list is 

 

          .

x ∈ ℱℓ1,3,4,9
9

{(i) ∣ i ∈ [9]} ∪ {(i,8,9) ∣ i ∈ [6]}

∪ {(i, j,8,9) ∣ i ∈ {1,2,3}, j ∈ {4,5,6,7}}

canonical triangulation

Then  is the projection image of the toric 

Richardson variety  in , where 

.

XD

Xv−1

w−1 ℱℓ9

v = 195387624, w = 953876241
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Question

Torus orbit closures  
in partial f

Projected toric Richardson varieties

Smooth projective toric varieties 

Fano generalized  
Bott manifolds 

Toric varieties arising from 
Polygon dissections

?
?



Thank you!!
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Etherington’s bijection

36

1. The base  corresponds to the root, and the diagonals correspond to the non-leaf vertices, not the 
root. 

2. There is a one-to-one correspondence between the small polygons in a dissection  and the non-leaf 
vertices of the Schröder tree . 

3. Each  corresponds to the set of children of the vertex  in .

(0,n + 1)

D
TD

ℰ0(𝖯(iq, jq)) (iq, jq) TD


