Partially supported by NSF DMS-2054513 SRIM @ Slaufer Math, AWM MERP

Outline of this talk: D (Torus) - Equivariant cohomology via GKM theory 2) The framework of splines - algebraic

2) The tranework of splines - algebraic and classical

3 Questions motivated by applied math

* "necessary": people get this to work without

The inclusion 2:XT C->X induces a map $2^*: H^*_T(X) \longrightarrow H^*_T(X^T)$ often called the localization map. For some TOX this map is injective For even more special TCX we can identify the image of $H^{*}_{T}(x)$ GKM quarantees the image comes from a particular graph

The GKM graph

For a single point, we have

$$H_{T}^{*}(pt) = \mathbb{C}[t_{1}, ..., t_{n}]$$

The image of the map
 $2^{*}: H_{T}^{*}(X) \longrightarrow H_{T}^{*}(X^{T})$
Sits inside $\mathbb{C}[t_{1}, ..., t_{n}]$
 $X^{T}[e]$

The GKM condition $|X^T|$ Consider the elements $\vec{p} \in \mathbb{C}[t_1, ..., t_n]$ satisfying for each edge uv p(u) - p(v) is a multiple of the label l(uv) on edge uv

The GKM condition Consider the elements $\vec{p} \in \mathbb{C}[t_1, ..., t_n]$ satisfying for each edge uv p(u)-p(v) is a multiple of the label l(uv) on edge uv

GKM Theorem:

These $\{z \neq \}$ form the image of $H_{+}^{*}(x) \rightarrow H_{+}^{*}(x^{T})$

module over
$$H_T^*(pt) = \mathbb{C}[t_1, ..., t_n]$$

The framework of splines
Given any ring R (commutative, with identity)
and any graph
$$G = (V, E)$$

whose edges are labeled with ideals in R
 $L: E \longrightarrow \{ \text{ ideals in } R \}$
the GKM condition defines a subring and
R-submodule of R^{VI}

Defn: The splines on the edge-labeled
graph (G,l) with coefficients in R are
Spl(G,l;R) =
$$\begin{cases} elements \vec{p} \in R^{|v|} \text{ with} \end{cases}$$

GKM $p(u) - p(v)$ is a multiple of
the label $l(uv)$ on edge uv
for all edges $uv \end{cases}$

G is the GKM graph, A If (luv) is the principal ideal generated by the T-weight, and $R = \mathbb{C}[t_1, ..., t_n] = H^*_T(pt)$ then Spl(G,l;R) is the image $2^*(H^*_T(X))$ inside $H^*_T(X^T) \cong R^{|V|}$

Example:

B Classical splines: piecewise polynomials
on a polyhedral decomposition of
a space, satisfying a k-differentiability
constraint.
$$y=x$$

 $y=x$
 $y=y$
 $y=0$
 $y=0$
 $y=0$
 p_1
 $y=0$
 p_2
 $y=0$

$$P_{1}|_{x=0} = P_{2}|_{x=0} \iff (P_{1} - P_{2})|_{x=0} = 0$$

$$P_{1}|_{X=0} = P_{2}|_{X=0} \iff (P_{1} - P_{2})|_{X=0} = 0$$

$$\iff (P_{1} - P_{2})(D) = 0$$

k-clifferentiability is the ideal:
polynomials
$$p_1 = p_2$$
 is the ideal:
 $p_1 = p_2$ $p_2 = p_2$ x_{-axis} partitioned
by point $x = 0$
 $p_1 = p_2$ $x_{-axis} = 0$
 $p_1 = p_2$ $x_{-axis} = 0$

$$\Leftrightarrow \left(\begin{array}{c} \rho_{1} - \rho_{2} \end{array} \right) \left(\begin{array}{c} 0 \end{array} \right)^{2} = 0$$

$$\Leftrightarrow \times \left(\begin{array}{c} \rho_{1} - \rho_{2} \end{array} \right) \left(\begin{array}{c} \rho_{1} - \rho_{2} \end{array} \right)$$

k-clifferentiability is the ideal:
polynomials
$$p_1$$
 $x=0$ p_2 x-axis partitioned
by point $x=0$
 $p_1|_{x=0} = p_2|_{x=0} \iff x | (p_1 - p_2)$
 $p_1|_{x=0} = p_2|_{x=0} \iff (p_1' - p_2')(0) = 0$

k-clifferentiability is the ideal:
polynomials
$$p_1$$
 $x=0$ p_2 x-axis partitioned
by point $x=0$
 $p_1|_{x=0} = p_2|_{x=0} \iff x | (p_1 - p_2)$
 $p_1|_{x=0} = p_2'|_{x=0} \iff (p_1' - p_2')(0) = 0$
 $\iff x^2 | (p_1 - p_2)$

k-clifferentiability is the ideal:
polynomials
$$p_1$$
 $x=0$ p_2 x-axis partitioned
by point $x=0$
 $p_1|_{x=0} = p_2|_{x=0} \iff x | (p_1 - p_2)$
 $p_1|_{x=0} = p_2'|_{x=0} \iff x^2 | (p_1 - p_2)$
 $p_1|_{x=0} = p_2'|_{x=0} \iff x^2 | (p_1 - p_2)$
 \vdots
 $p_1|_{x=0} = p_2'|_{x=0} \iff x^2 | (p_1 - p_2)$

More generally, if F_1 and F_2 are facets with $F_1 \cap F_2 = \{l = 0\}$ for an affine form l then

Pi & P2 are piecewise K-differentiable polys

More generally, if F, and Fz are facets with $F_1 \cap F_2 = \{l = 0\}$ for an affine form I then e^{k+1} $(P_1 - P_2)$ P. & P. are piecewise K-differentiable polys where F_{1} F_{2} F_{1} F_{2} F_{2} F_{2} $\langle \Rightarrow \rangle$ $P_1 = \ell^{K+1} P_2$ $F_1 \qquad F_2$

in dual graph

Some big	differences	between	these	examples
	A torio topolo	- 9у	B an	alysis
Edge label	e	ekt	n for a	ny k≥o

Some big a	differences betw	een these examples:
	A toric topology	B analysis
Edge label	e	ekti for any k>0
Degree	$d = \infty$	can restrict to $polys$ of $deg \leq d$

Some big d	ifferences betw	een these examples:
	A toric topology	B analysis
Edge label	e	e ^{k+1} for any k >0
Degree	$d = \infty$	can restrict to $polys$ of $deg \leq d$
Free over R	YES	SOMETIMES

FREE 2% 2. \mathcal{O} (2× + \bigcirc y(x-1 (x-y) \bigcirc Х C ײ X 2 (x-y)² X (X

· Subgraphs

· Subgraphs

· Subgraphs

- · Subgraphs
- · Path replacement

- · Subgraphs
 - · Path replacement
 - Change coefficients

$$\int \mathbb{C} [t_1, ..., t_n]$$

$$\mathbb{R} [t_1, ..., t_n]$$

$$\mathbb{Z} [t_1, ..., t_n]$$

$$quotient rings$$

- · Subgraphs
 - · Path replacement
 - Change coefficients
 - and other algebro-combinatoria)
 Operations without obvious geometric interps

What does it mean topologically or geometrically to use l^{K+1}?

What does it mean topologically or geometrically to use l^{K+1}?

Can we analy ze spline representations?

Can we analy ze spline representations? Any graph automorphism that preserves GKM conditions induces a representation on the module of splines

Spline representations:

Any action that makes combinatorial sense

Spline representations:

Any action that makes combinatorial sense

EXCHANGE HORIZONTALLY

Upper bound conjecture : For splines on graphs dual to planar triangulations, of <u>degree</u> at most 3 and differentiability 1 so labels l^2

The conjecture is a formula for dimension of spline space, as vector space

Upper bound conjecture : For splines on graphs dual to planar triangulations, of degree at most 3 and differentiability 1 so labels l2

Upper bound conjecture:
For splines on graphs dual to planar
triangulations, of degree at most 3
and differentiability 1 so labels
$$l^2$$

Constant spline of degree 53
of R-module = $1 + \sum_{n=2}^{4} \frac{4}{2} + \sum_{n=2}^{2} \frac{4}{2} + \sum_{n=$

"Singular faces " are the 4-cycle faces with symmetry

"Singular faces " are the 4-cycle faces with symmetry 0 6 R S 2 000 X n ° D D 0 u(x-u) 0

THANK YOU!