Partially supported by NSF DMS-2054513

Outline of this talk : ① (Torus) - Equivariant cohomology via GkM theory ^② The framework of splines-algebraic

and classical

③ Questions motivated by applied math

①Trust) Equivariant Cohomology via GKM Set-up : a suitable geometric object with a well-behaved torns action Examples: [↑] & ^X where ^X is · ^a symplectic manifold with a Hamiltonian T-action ^① a Smooth , complete , complex toric variety ⑧ a partial flag variety Gp with maximal torus

T acts on ^X with · isolated fixed points · the boundary of each 1-orbit consists of two distinct fixed points =

· an additional condition called vivariant formality .

T acts on ^X with · isolated fixed points · the boundary of each 1-orbit consists of two distinct fixed points -

· an additional condition called #equivariant formality

* "necessary": people get this to work without

The inclusion $2: X^{\top} \hookrightarrow X$ induces a map v sion $v: X' \hookrightarrow X$
 $v^*: H^*_T(x) \longrightarrow H^*_T(x^T)$ sion $2:\lambda^{\top}$
 $H^{\ast}_{\tau}(x) \longrightarrow$ often called the localization map. For some TCX this map is njective For even more special TCX we can on $i:X' \hookrightarrow X$ induces a model $i^*(x) \rightarrow H^*_{\tau}(x^{\tau})$
led the localization map.
TCX this map is linjective
more special TCX we can
identify the image of $H^*_{\tau}(x)$
rantees the image \int identify the image of $H^*_{\tau}(x)$ GKM guarantees the image more special $T(X$ we can
identify the image of $H^*(X)$
rantees the Image from a particular graph

The GKM graph

For a single point, we have
\n
$$
\mu_{\tau}^{*}(pt) = C[t_{1},...,t_{n}]
$$
\n
$$
The image of the map \n $t^{*}:H_{\tau}^{*}(x) \longrightarrow H_{\tau}^{*}(x^{T})$ \n
$$
Sds \text{ inside } C[t_{1},...,t_{n}]
$$
\n| $x^{T}|$
$$

The GKM condition The GKM condition
Consider the elements
Satisfying for each $|x^{\mathsf{T}}|$ Consider the elements $\overrightarrow{p} \in \mathbb{C}$ [t,,.., t,] satisfying for each edge UV GKM condition

nsider the elements $\vec{p} \in \mathbb{C}$ [t₁,..., t₂]

tis flying for each edge uv
 $\boxed{p(u)-p(v)}$ is a multiple of

the label $\ell(w)$ on edge uv uv for each edge uv
- p(v) is a multiple of
Label ℓ (uv) on edge uv

The GKM condition The GKM condition
Consider the elements
Satisfying for each $|x^{\mathsf{T}}|$ Consider the elements $\vec{p} \in \mathbb{C}$ [t,,.., t.,] satisfying for each edge UV GKM condition

Insider the elements $\vec{p} \in \mathbb{C}$ [t₁,..., t₂]

It is flying for each edge uv
 $\boxed{p(u) - p(v)}$ is a multiple of

the label $\ell(w)$ on edge uv

M Theorem: uv for each edge uv
- p(v) is a multiple of
Label ℓ (uv) on edge uv The GKM con
Consider the el
satisfying for
Pre Label
EKM Theorem:
nese $\frac{5}{5}$ form

GKM Theorem :

These $\{\frac{5}{9}\}$ form the image of $H_{f}^{*}(x)$ $\hookrightarrow H_{f}^{*}(x^{T})$

This identifies $H_T^*(x)$ with a subring
and submodule of $H_T^*(pt)^{|\mathbf{x}^\intercal|} = \mathbb{C}[t_1, t_2, t_3]$ using pointwise mult, add, scaling • [Equivariant formality: | H* (x) is a free

$$
1 + \frac{1}{\sqrt{1 + \frac{1}{\sqrt
$$

(a) The framework of splines
\nGiven any ring R (commutative, with identity)
\nand any graph
$$
G = (V, E)
$$

\nwhose edges are labeled with ideals in R
\n $l : E \rightarrow \{$ ideals in R\}
\nthe GKM condition defines a subring and R-submodule of R^{1V1}

Defn	The splines on the edge-labeled
graph (G, L) with coefficients in R are	
Spl (G, L; R) = { elements $\vec{p} \in R$	
GKM	$p(u) - p(v)$ is a multiple of condition
the label l(uv) on edge uv	
for all edges uv	

^① If ^G is the GKM graph, f(uv) is the principal ideal generated by the T-weight, and l(uv) is th
generated t
R = C [t,, $...$, t_n] = $H^*_{T}(pt)$ then S_{p} l (G, ^C ; R) is the image $|{\sf v}|$ ι^* (H $\check{\tau}$ (x)) inside H^*_{τ} (X^T) \cong R[']

Example :

- ^⑬ Atlassical splines : piecewise polynomials on a polyhedral decomposition of a space , satisfying a k-differentiability constraint. Polyo ⁼ Palyo K pilyo ⁼ Pilyo i p : y=0 = py=0

$$
P_{1}|_{x=0} = P_{2}|_{x=0} \iff (P_{1}-P_{2})|_{x=0} = 0
$$

$$
p_1|_{x=0} = p_2|_{x=0} \Leftrightarrow (p_1-p_2)|_{x=0} = 0
$$

$$
\Leftrightarrow (p_1-p_2)(0) = 0
$$

k-clifferentiability is the ideal:
\npolynomials on P₁ x=0 P₂ x-axis parbitored
\n
$$
ln x
$$
 p₁ = p₂ x=0 $⇒ (p, -p_2) = 0$

$$
p_{1}|_{x=0} = p_{2}|_{x=0} \Leftrightarrow (p_{1}-p_{2})|_{x=0} = 0
$$

$$
\Leftrightarrow (p_{1}-p_{2})|_{0} = 0
$$

$$
\Leftrightarrow (\rho_{1}-p_{2})|_{(p_{1}-p_{2})}
$$

k-clifferentiability is the ideal:
\npolynomials
\n
$$
p_1
$$
 x=0
\n p_2 x-axis parbitored
\nby point x=0
\n p_1 x=0
\n p_1 x=0
\n p_2 x=0
\n p_1 x=0
\n p_2 x=0
\n p_1 x=0

k-clifferentiability is the ideal:
\npolynomials
\n
$$
p_1
$$

\n p_2
\n p_3
\n p_4
\n p_5
\n p_6
\n p_7
\n p_8
\n p_9
\n p_1
\n p_1
\n p_2
\n p_3
\n p_1
\n<

k differentiability is the ideal -> : -> X=⁰ X-axis partitioned polynomials o-oPi Pa in ^X by point ^X ⁼ ⁰ Plx ⁼ ^o = Plx ⁼ o x/(ppz) Pilx ⁼ ^o = Plx ⁼ ^o =) ^x =)(p, p) : pikx ⁼ ⁰ = p * (x ⁼ ⁰ =)x**)(p, p)

More generally, if F, and F₂ are facets with $F_1 \cap F_2 = \{ \ell = 0 \}$ for an affine form & then

P. & P2 are piecewise K-differentiable polys

More generally, if F, and F₂ are facets with $F_1 \cap F_2 = \{ \ell = 0 \}$ for an affine form 1 then P. & P2 are piecewise K-differentiable polys - Pz) where P_1 P_2 P_3 P_4 P_5 P_6 · , Fz hen
 e^{k+1}
 e^{k+1}
 e^{k+1}
 e^{k+1}
 F_2
 F_3 k + ¹

in dual graph

Example :	$R = C[x, y]$	Graph is $\mathbb{P}^1 \times \mathbb{P}^1$
or $\mathbb{P}^1 \times \mathbb{P}^1$	and labels are squared	
or \mathbb{P}^2	Represent splits as vertex	
do \mathbb{P}^2	labeled graphs	

FREE ∠⊁ $\overline{2}$ \overline{O} $2x$ $\begin{array}{c} \begin{array}{c} \end{array} \end{array}$ \overline{O} \mathbf{z} <u>y (x-ા</u> $(x-y)$ \overline{O} $\overline{\mathsf{X}}$ $\mathbf C$ x^2 d $\overline{\mathbf{c}}$ $(x-y)^2$ x tx

Things we can do with splines : ngs we can do with :
Subgraphs

· Subgraphs

· Subgraphs

· Subgraphs

- · Subgraphs
	- · Path replacement

- · Subgraphs
	- · Path replacement
	- . Change coefficients

$$
\left\{\n\begin{array}{c}\n& \mathbb{C} \left[t_1, \ldots, t_n\right] \\
& \mathbb{R} \left[t_1, \ldots, t_n\right] \\
& \mathbb{Z} \left[t_1, \ldots, t_n\right] \\
& \mathbb{Q} \text{ \textit{othern+ rings}}\n\end{array}\n\right.
$$

- · Subgraphs
	- · Path replacement
	- · Change coefficients
	- · and other algebro-combinatorial operations without obvious geometric interps

What does it mean topologically e^{k+1} or geometrically to use

What does it mean topologically geometrically to use $K+1$ or

Duestions
Can we Can we analyze spline representations?

Duestions
Can we Can we analyze spline representations?

Any graph Ver analy se spline representions
In that
In the morphism that
In the SEM conditions
Inces a representation on the
Independent of splines automorphism that stions
, we analy ze spline representation
graph automorphism that
, these GKM conditions
, ces a representation on the
dule of splines | preserves GKM conditions | induces a representation on the module of splines

Spline representations:

Any action that makes combinatorial sense

Spline representations:

Any action that makes combinatorial sense

EXCHANGE HORIZONTALLY

Upper bound conjecture : For spliries on graphs dual to planar triangulations, of <u>degree</u> at most 3 opper bound conjecture:
For splines on graphs dual to pl
triangulations, of <u>degree at most 3</u>
and <u>differentiability</u> 1 so labels
The conjecture is a formula for :
at most 3
1 so labels $\boxed{l^2}$

The conjecture is ^a formula for dimension of spline space , as vector for
rector space

Upper bound conjecture : For splines on graphs dual to planar triangulations, of <u>degree</u> at most 3 and sound conjecture
Unies on graphs
differentiability
differentiability $diams,$ G $\frac{deg \cdot ee - e^{-e}}{deg \cdot ee - e^{-e}}$

Reaghy, it	1	2	Heages inf	1	2
# of R-models	1 + $\sum_{x \text{ non square}} 1$	1	2		
denerators	1 + $\sum_{x \text{ non square}} 1$	1			

Upper bound conjecture:		
For spluries on graphs dual to planar		
triangulations, of degree at most 3		
and differentiability I so labels [L ²]		
constant spline	for degrees 3	
If of R-module = $1 + \sum_{i=1}^{n} (*edges in F) + \sum_{v_{non}}$		
generators	face F	3

"Singular faces" are $\frac{d}{d}$ the 4-cycle faces Singular faces are
the 4-cycle faces
with symmetry symmetry

"Singular faces" are the 4-cycle faces With symmetry \bullet E
R
S
S O $\mathbf{2}$ ပ
ပ္က Ų $\overline{\mathsf{x}}$ O 'o
D \overline{D} \circ u (x-u) \circ

THANK YOU!