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Outline of this talk :

① (Torus) - Equivariant cohomology
via GkM theory

② The framework of splines-algebraic

and classical

③ Questions motivated by applied math



①Trust)Equivariant Cohomology via GKM

Set-up : a suitable geometric object
-

with a well-behaved torns action

Examples: ↑ & X where X is

· a symplectic manifold
with a

Hamiltonian T-action

① a Smooth
, complete , complex toric variety

⑧
a partial flag variety Gp with maximal torus



#

How much of that structure is necessary
?*

T acts on X with

· isolated fixed points

· the boundary of each 1-orbit

consists of two distinct fixed points

· an additional condition called

=vivariant formality .



#

How much of that structure is necessary
?*

T acts on X with

· isolated fixed points

· the boundary of each 1-orbit

consists of two distinct fixed points

· an additional condition called

#equivariantformality
-

* "necessary" : people get this to
work without



The inclusion 2 : X*-X induces a map

2 : HY(x) -> H](xT)
Often called the localization map .

For some T & X this map isfective
For even more special T& X we can

-colentifythe image*(x) /

GKM guarantees the image

mesfrom a particular graph!



The GKM graph (or moment graph)
-

· Vertices are T-fixed points

· Edges are Idim
T-orbits

Flag variety
Hess variety IP'x /Pi

O

⑧ X ·# I !
I

%/



TheGMgrapSebeled with weight of T-orbit
- = t

,
- tz -
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- = +z- t3 -
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X
I I* I ! -
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O



For a single point , we have

H* (pt) = &St, . . . ., Ent
# can be

changed
The image of the map

IV) in the

2*. HE(X)- HE(XT)
(xT) &

graph

Sits in side C[t
, ...,
Ent



The GKM condition
-

| xT |

Consider the elements Je K [t
, ...,
tn]

satisfying for each edge UV

Tu-p(u)is a multiple ofI on edge uY

theLabel ((ur)



The GKM condition
-

| xT |

Consider the elements Je K [t
, ...,
tn]

satisfying for each edge UV

Tu-p(u)is a multiple ofI on edge uY

theLabel ((ur)

GKM Theorem :

-

TheseE53 form the image of HF(X)4HI(XT)



·This identifies HI(X) with a subring
IXT) |xi |

and submodule of H* (pt) =([t , ...,tn]

using pointwise mult ,
add

, scaling

vivariantformality : HE(X) is a free

module over H* (pt) = St, . . . . , In



②Nameworkof splines

Given any ring
R Commutative ,

with identity)
-

and any graph G = (V
,
E)

with ideals in Rwhosearelabeled ideals in Ry

the GKM condition defines a subring and

IVI
R-submodule of R



Ren: The seties on the edge-labeled

&raph (G ,
1) with efficients in R are

(v)

Spe(G , C ; R) = Gelements Je R with

GkM--p()is a multiple of
condition the Label C(ur) on edge

uY

-

for all edges or]



Example:

① If G is the GKM graph,

f(uv) is the principal ideal

generated by the T-weight ,
and

R =( [t , ,
. . .,
Int = H(pt) then

Spl(G ,
C ; R) is the image

IVI

2
* (H& (x)) inside HEXTER



Example :

-

⑬Atlassicalsplines : piecewise polynomials

on a polyhedral decomposition of

a space
, satisfying a k-differentiability

constraint.

Polyo = Palyo

K pilyo = Pilyo
i

p: y=0

= py=0



k differentiability is the ideal :

->
->

p,
x=0

Pa X-axis partitioned
Opolynomials-

by point X =0

in X

Pilx
=o

= Plx = o
= (p.

- P2)(x
= 0

=0



k differentiability is the ideal :

->
-> X=0 X-axis partitioned

polynomials O Pi Pa-o

in X by point X =0

Pilx
=o

= Plx = o
= (p.

- P2)(x
= 0

=0

= (p .

- P2)(0) = 0



k differentiability is the ideal :

->
-> X=0 X-axis partitioned

polynomials O Pi Pa-o

in X by point X =0

Pilx
=o

= Plx = o
= (p.

- P2)(x
= 0

=0

= (p .

- P2)(0) = 0

-x((p - pz)



k differentiability is the ideal :

->
-> X=0 X-axis partitioned

polynomials o Pi Pa-o

in X by point X =0

Plx
=o

= Plx =o x/(p - pz)

Pilx
=o

= Plx =o (pi - P2)(0) = 0



k differentiability is the ideal :

->
-> X=0 X-axis partitioned

polynomials o Pi Pa-o

in X by point X =0

Plx
=o

= Plx =o x/(p - pz)

Pilx
=o

= Plx =o (pi - P2)(0) = 0

=)x)(p ,
-p)



k differentiability is the ideal :

->
-> X=0 X-axis partitioned

polynomials o Pi Pa-o

in X by point X =0

Plx
=o

= Plx =o x/(p - pz)

Pilx
=o

= Plx = o =) x
= )(p ,

-p)
:

pikx
=0

= p
*(x

= 0 =)x
** )(p ,

-p)



More generally ,
if F

,
and F are

facets with F
, nFz = Se = 0 3

for an affine form 1 then

P.
& Pe are piecewise

K- differentiable polys

Fp



More generally ,
if F

,
and F are

facets with F
, nFz = Se = 0 3

for an affine form 1 then

P.
& Pe are piecewise

K- differentiable polys (in)(P.
-Pz)

where

Pi l Pe
·-Fp F
,

k + 1

Fz

in dual graph



Sebigdifferences between these examples :

- Jen an eEdge label I
I I



Sebigdifferences between these examples :

·can restrict topolys of deg = d

I I



#can restrict to

Degree

SOMETIMES
I



Example : R = ((x
, y] Graph is IP'XIPI

and labels are squared

2
O

/Ipresentsplines as
very

a



Example : R = ((x
, y] Graph is IP'XIPI

2 O
and labels are squared

x21
O

/Ipresentsplines as very

a
O

Free generators :

2
2 x2y2

I X Y O

O O

1 x1) 1\yz 1
I

O O
I

O O
O

O O

I 1/0 / 01/0
O O

I ② O
O go



Example i R =([x
, y]

-

2 2

Y · I
2

X- X
& I- &

- ·

&

X I I 2 I I I I2 X

-
⑧
- I

·

- O

2
(x-y)z

⑫ · xyz O-

-2xy+y
Y ·

O &
&

2
2 I I x2 X I I x2X

⑧ 2 O ⑧
- ·

2

O - x(x- y) (x-y)zy(x -y)(x-y)z



Example : R = ([x
, y]

-

2 2
2

Y · I X X

&
- I- ·

&
- ·

&

X I I 2 I I I I2 X

⑧ I O
-
(x-y)z ·
-

2 -2xy+y
Y ·

O &

⑫ · O
&
-

2
2 I I x2 X I I x2X

O
⑧
- x(x-y) O ⑧
- · y(x -y)z

(x-y)z (x-y)z
= - 2xy + xyz = x3y -2xyz+y



NOT # REE

-2xy+y
- · Xy2 O

&
- ·

( I ( t X ( ((2x -y)0
.

I I I
· x(x-y)

0-· y(x -y)zO -

O y2 ·
8
-

2 x2
- 2 X I II &

-· xx-e)⑧

O (x-y)z



Things we can do with splines :

· Subgraphs -

·Xi
1



Things we can do with splines :

· Subgraphs %
11

C
e
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Things we can do with splines :

· Subgraphs -O &

NI
C

e

-
e



Things we can do with splines :

· Subgraphs
↑ &TI , Iz C
- I

-2

-⑧ ·

· Path replacement U X

-

U Y



Things we can do with splines :

· Subgraphs

· Path replacement
C [t, , . .

.,
tn]

· Change coefficients E IR[t, c
. . . .
An]

& It, c . ...
En J

quotient rings
-



Things we can do with splines :

· Subgraphs

· Path replacement

· Change coefficients

· and other algebro-combinatorial

operations without obvious geometric interps



③Questions

What does it mean topologically
or geometrically to use &***

O

x 2 ex ------

O O
O

: "A ·



③Questions

What does it mean topologically
or geometrically to use &***

O

x 2 ex ....

O O
O

% / C / -
I

O O T
O

Splines here are HE(D'XIP1) What about here ?



③ Questions
-

Can we analyze spline representations ?



③ Questions
-

Can we analyze spline representations ?

Any graph automorphism that

Ireserves GKM conditions
-

induces a representation on the

module of splines



Example (from the first talk) regss Hess vars
-

(wp)(u) = w(p(wu)
oo

O ⑧()
/

Si
totz

= I I

title
O 09 it

8 tz-t ,



Anotherexample : flag varieties

(wp)(n) = p(uw)
titz

titz

3i
tit p

O O

t
, - tz



Felinerepresentations :

Any action that makes combinatorial sense



Spline representations :

-

Any action that makes combinatorial sense

EXCHANGE HORIZONTALLY

P, y · P2 P · Pi
&

&

2
2 I I x2 # X I I X2

X

⑧
⑧ -

P3 - · PH(x-y)z
·

(x-y)2 Py P3



Upper bound conjecture :

-graphs dual to planarFor spliries on

triangulations , of degree
at most 3

and differentiabilityI so labelsf
-

The conjecture is a formula for

dimension of spline space ,as vector space-
-



Upper bound conjecture :

-graphs dual to planarFor spliries on

triangulations , of degree
at most 3

andadifferentiability1 so labels (e)

Roughly, it
predicts the 3 1 + [HedgesinF) + 2 1- 2
# of R-module face E nosolar
generators faces"



Upper bound conjecture :

-

For spliries on graphs dual
to planar

triangulations , of degree
at most 3
-

and differentiability I so labels []
-
-non-constant

generators
constant spline _of degree =32

# of R-module = 1 + [Hedgesin + 27
non

generators face E "singular
&

faces" &
??



"Singular faces" are a
O

&

the 4-cycle faces /a
with symmetry



"Singular faces" are a
O

&

the 4-cycle faces /a
with symmetry

I

I 1-

11 I I
·
-

O O I I I

I ? 2
-

&

O
O

go

x2 I
O

O

O
O

y2 E
o

I I

I

&

I

I I
x1) 1\yz -

O

O O O O S -2xy+y

1/0 a &
-- xy2 Og-

&

O
⑧

-x(x-y) 00-
·y(x-y)z



THANK YOU !


