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Example

H*(CP}, ;2) = Z & Z (w1) ® Z (wa),
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Motivation
Kawasaki '73

H*(CPG, 0 2) S LS L{w1) @ D ZL(wy),
where deg w; = 27 and w; U wj = ¢;5 - Wiy ;.
Example
H*((CPia,b; )2 Z®Z(w) DZ(ws),
where w; Uw; = ab - ws.

In terms of toric geometry
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Questions

(an7 bn) -------------------

H*(—Z
XZ _____
To be more precise,
Z k=04
For ¥ as above, H¥(X5;Z) = Z" k= 2;
0 o.w.
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Questions

(anybn) ----------------------- s
ring structure(?) ~
v
H*(—Z
XZ “““ o~ (XE7 Z)
To be more precise,
7Z k=04

For ¥ as above, H*(X5;Z) = Z" k= 2; Hence, questions are...

0 o.W.

1. Find good “bases” {uy,...,u,} C H*(Xx;Z) and v € H*(Xx;7Z).

2. Find a formula for M (Xx) = (¢i5)1<i,j<n With
H?*(Xs;Z) ® H*(Xx;Z) N HYXs3;7Z), u; U Uj = Cij -V
“in terms of {(a1,b1),..., (an,bn)}"
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Theorem (Fu-So-S, arXiv:2304.03936)

(an, bn)

(a2,b2)
For a toric surface Xy associated with * (=1, 0)

(0771) (al,b1)

3 additive ordered basis {u1,...,u,} C H?>(Xx;Z) and a generator
v € HY(Xx;Z) such that

a1b1 albg s albn

aiby azby -+ agby,
u; Uuj =abju, ie, M(X)= . )

albn a2bn o anbn
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Example

z k=0;
Z<’LL1,’LL2> k':2,
Z (v) k = 4;
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Example

upUup = —2-v; —2 4
where ¢ uy Uug =4 -; ie, M(Xy) = [ 4 2]
UQUUQ = 72'"0,
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Preliminaries for the proof: H*(Xx;7Z)
(1) [Danilov '78, Jurkiewicz '80]
For a smooth toric variety Xy,
> Hi(Xs;Z) = SR[Y] = Zz, | pc 2M]/T,
where Z = <Hper z, |cone(p|pel)¢ E> .
> H*(Xs;Z) =2 SR[X]/J,
where J = <Zp€2(1) (up,ei)x, |i=1,... ,n>.
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(1) [Danilov '78, Jurkiewicz '80]
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Remark
1. , (€ H*(Xx;Z)) = Poincaré dual of [D,] (€ Hap—2(X5;7Z)).
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Preliminaries for the proof: H*(Xx;7Z)
(1) [Danilov '78, Jurkiewicz '80]
For a smooth toric variety Xy,
> Hi(Xx;Z) = SR[Y] :=Z[z, | p € V)/Z,
where Z = <Hper z, |cone(p|pel)¢ E> .
> H*(Xs;Z) = SR[X]/J,
where J = <Zp€2(1) (up,ei)x, |i=1,... ,n>.

Remark
1. , (€ H*(Xx;Z)) = Poincaré dual of [D,] (€ Hap—2(X5;7Z)).

2. For a toric orbifold X, above formula works over Q.

Example

H*(X5;Q) = Qlx1, 2, 3, 24] /T + T
1= <115E3,I2I4>

j = <2(E1 — X9 — T3,—T1 + QIEQ — [L’4>
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Preliminaries for the proof: H*(Xx;7Z)

(2) [Bahri-Sarkar-S, 17]
For a toric orbifold X5 (with ‘H°¥(Xx;7Z) = 0)
> Hri(Xs;Z) = wSR[X] C SR[X],
> H*(Xs;7Z) = wSR[Y]/J =: wSR[Z].
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Preliminaries for the proof: H*(Xx;7Z)

(2) [Bahri-Sarkar-S, 17]
For a toric orbifold X5 (with ‘H°¥(Xx;7Z) = 0)
> Hp(Xs;Z) 2 wSR[X] C SR[X],

> H*(Xs;Z) 2 wSR[X]/J =: wSR[Z].

Remark

1. wSR?*[¥] = CDivy(Xx) € Divy(Xy) = SR*[X].

2. Unlike SR[X], the subring wSR[X] is not generated by degree 2.

3. Finding ‘basis’ for each degree of wSR[X] or wSR[X] requires
case-by-case computations.
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Example
(a,b)

L= ¢---3 Xy =CP?,,

(07 _1)

> wSRQ[E] is generated by {az1 — x9,bx; — 3, abx},
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Example

(a,b)

L= ¢---3 Xy =CP?,,

(07 _1)

> wSRQ[E] is generated by {az1 — x9,bx; — 3, abx},
> wSR*[Y)] is generated by {a2b%x2, abxixs, b223, a2z s, Toxs}
> J = (ax1 — x2,bz1 — x3)

» wSR[E]/J = wSR[E] = Z & Z ([abz1]) & Z ([x223])

8/23



Example

(a,b)

-1,0
z — . ¢---3 Xy =CP?,,

(07 _1)

wSRQ[E] is generated by {az1 — x9,bx; — 3, abx},
wSR*[X] is generated by {a2b?2?, abxyxo, b223, a?x 23, Toxs}
J = (axy — x2,bry — 3)

wSR(E]/T = wSR[E] = Z& Z ([abe1)) & Z ([eaas])

vV v. v v Y

ring structure: [abxq] - [abz1] = [a?b?2?] = ab[rax3).
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Topological model of a toric variety

Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map
X — t*. Then,

X = (PxT)/,

where (z,t) ~ (y,2) iff 2 =y and t7's € Tr(y).
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Topological model of a toric variety

Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map
X — t*. Then,

X = (PxT)/,

where (z,t) ~ (y,2) iff 2 =y and t7's € Tr(y).

(T?/83,

Q

(P xT?)/~

A1 As

A3
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1. Orbifold structure.

A1 As

A2 A4

A3
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1. Orbifold structure.

A1 As

A2 A4

A3
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1. Orbifold structure.

A1 As (RQZ X T2)/~std ~C?

fo X exp[A1, Az2]
A2 Ay

(Upy x T?) )~y 2 C2/G

A3
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1. Orbifold structure.

A As (RQZ X T?) ) grq = C?

fu > exp [A1, Ag]
)\2 )\4

(Upy x T?) )~y 2 C2/G

A3

2. Cofibration. ($3/G -5 \/ §% — X)
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1. Orbifold structure.
T?/S},

A1 As
B TQ/TELAQ
A2 A4 B T2/Si2
A3

2. Cofibration. ($3/G -5 \/ §% — X)

)\1 g /\5
Su
A2 F ! A4
A3

(Uy x T2)/ o),

(B2 x T2)/~,,, = C?

fu > exp [A1, Ag]

1%

™2 /Yy
Ce/G

A1 As

/\2 )\4

Az

10/23



1. Orbifold structure.
T?/S}, (RZ X T?)/n gy = C?

A1 As ‘
B TQ/TELAQ
A2 A4 B T2/Si2 P,
A3

2. Cofibration. ($3/G -5 \/ §% — X)

sZ
A1 As

A1 e “
Cc(S%/G U 52 =
M ceen oV 52 e A
' i)/ As
S2

fu > exp [A1, Ag]

~02/G

(Uy X T2)/my 2 C2/G
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Preliminaries for the proof: cellular basis

(3) For X5 corresponding to

(an,bn)

(a2, b2)
or (a2 3 b2)

(a1,b1)

(0,-1)
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Preliminaries for the proof: cellular basis

(3) For X5 corresponding to

(an,bn)

(a2, b2)
or ((l2 3 b2)

(a1,b1)
(a1, b1)
(0,-1)

there is a cofibration

S?’—>\H/Si2—>XE

i=1
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Preliminaries for the proof: cellular basis

(3) For X5 corresponding to
ap, by
( ) (an. bn)

(as.b2)
o (10 o

(a1,b1)

(0’_1) (a17b1)

(O’ 71)
there is a cofibration
n
S* = \/ 87 = Xz
i=1
which gives us:

> HQ(XE;Z) =7Z <[S%]7 B [S7211>
> Hy(Xs;Z) = Z{[D*])
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Preliminaries for the proof: cellular basis

(3) For X5 corresponding to

(an, bn)

or (a27 b2)

(a1,b1)

(O’ 71)

there is a cofibration
n
S* = \/ 87 = Xz
i=1
which gives us:
> HQ(Xz;;Z) =7 <u1, e ,un>, where <ui, [SJQD = (5“
> H*(Xx;Z) = Z(v), where (v,[D*]) = 1.

11/23



Summary

So far we have defined two different types of bases:

Good

Bad

wSR-basis

Easy to see the

product structure

Hard to find a basis

Cellular basis

Easy to find a basis

Hard to see the

product structure
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Example

{ (a,b) Xs=CP},,
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Example

E:

{ (a,b) Xs=CP},,
1. (SR-basis)

H*(CP3, i) = wSR[S]
~ 7 & Z ([abz1]) & Z ([z223]) / {[abz1]* — ablzaz3])
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Example

E:

{ (a,b) Xs=CP},,
1. (SR-basis)

H*(CP3, i) = wSR[S]
~ 7 & Z{[abx1]) & Z ([xo3]) / {[abz1]? — ab[zax;])

2. (Cellular basis) S* — 5> — CP? , ,
H*(CP?},,;Z) 2 Z® Z(u) ® Z(v) (as groups)
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Example

E:

{ (ab) Xn=CP},,
1. (SR-basis)

H*(CP?,,,;7) = uSR(Y]
~ 7 & Z{[abx1]) & Z ([xo3]) / {[abz1]? — ab[zax;])

2. (Cellular basis) S* — 5> — CP? , ,
H*(CP?},,;Z) 2 Z® Z(u) ® Z(v) (as groups)

Remark

As rank H?(CP3 , ,;7) = rank H*(CP? , s 7Z) = 1,
[abz1] <> v and  [zax3] <> .

(with appropriate choices of orientations on S? and S?).
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For general cases

(aru bn)

(@i, b;) (@i, bi)
“toric morphism” (—1,0)

(a1301) (0,-1)
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For general cases

(aru bn)

(@i, b;)
“toric morphism”

(ar3b1)

In general

>¢IZ—>EI = ¢ Xy — Xy

: 2
> Hence, we have: Xy — CP7, ,

(_LO)

(07 _1)

(as,b;)
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For general cases

(aru bn)

(@i, b;) (@i, bi)
“toric morphism” (—1,0)

(a1301) (0,-1)

In general
>¢IZ—>EI = ¢ Xy — Xy
> Hence, we have: X5, — CP7 ,

» For a toric morphism ¢: ¥ — X’ of simplicial fans, we have:

H* (Xs:Z) 2 H*(Xx:Z)

o

~

wSRZY] R, sR.

14 /23



(ai, b;)
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(ai, b;)

Then, wSR(¢*): wSR[E;] — wSR[X] is given by

i—1 n
laibizs] = | arbiys + aibiyi + Y, aibrys
k=1 k=it1

[T223] = [Ynt1Ynt2)-
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Revisit the main result

Theorem [Fu-So-S, arXiv:2304.03936]

(an 5 bn)

(az,b2)
For a toric surface X5 associated with * (=1, 0)

(07_1) (al,bl)

3 additive basis {u1,...,u,} C H?>(X;Z) and a generator v € H*(X;Z)
such that
a1b1 a1b2 e albn
a1b2 a2b2 e agbn
u; Uuj = abju, e, M(X) =

albn a2bn o anbn
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Sketch of the proof

Step 1: The case of CP?

a,b
For ¥ =" (=1,0) (@)
(0771)

Define {u,v} C H*(Xyx;Z) such that

Then we have: u? = ®~1([abxz1]?) = @~ (ab[zax3]) = abv.

17/23



Step 2: Diagonal entries of M (Xy)

(an,bn)

(ai, bi)
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Step 2: Diagonal entries of M (Xy)

(an,bn)

(ai, b;)

S —— Vi, S —— Xy

lpinch ldﬁ

S3 S? (Cpiai»bi

(3
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Therefore,

u; Uy = ¢*(uUu)
= ¢*(asbiv)
= albm)* (U) = aibiv
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Step 3: Off-diagonal entries of M (X))

/@ubz’)

aj,b;)
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nn
[

%/\

S3

\

— O
N

/
R

Vi, 82— SV 82

2
(CPLanbi

\) CPp?

1,aj,bj

XE E—— XE/
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wSR[E] +—— wSR[Y]
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l H(CPY4,0,)
o Dy |
wSR[X;]
— s 2 | =
wSR[E] +—— wSR[Y'] \
wSR[E;]

[aibixﬂ, [$2$3]

—

[—aiza], [=b;23], [2324]
(\4

[ajbjx1], [z223]
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[—aiza] - [=bjz3]
= asbj [2324] <.

[ajbjzi], [223]
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U,V
u; Uuy uiD quD s

— O
= aibj v = aibj v €~~\\

 fabjza], [z2ws]
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u; Uuy uiD Uu
= aibj v = aibj v €--_

 laybja], [xaws)

Thank you for your attention.
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