# Integral cohomology ring of toric surfaces

Jongbaek Song (Pusan National University) jointly with X. Fu and T. So

> August 22, 2024 Workshop on Toric Topology

### Kawasaki '73

$$H^*(\mathbb{C}\mathrm{P}^n_{a_0,\ldots,a_n};\mathbb{Z})\cong\mathbb{Z}\oplus\mathbb{Z}\langle w_1\rangle\oplus\cdots\oplus\mathbb{Z}\langle w_n\rangle,$$

where  $\deg w_i = 2i$ 

### Kawasaki '73

$$H^*(\mathbb{C}\mathrm{P}^n_{a_0,\ldots,a_n};\mathbb{Z})\cong\mathbb{Z}\oplus\mathbb{Z}\langle w_1\rangle\oplus\cdots\oplus\mathbb{Z}\langle w_n\rangle,$$

where  $\deg w_i = 2i$  and  $w_i \cup w_j = \mathbf{c_{ij}} \cdot w_{i+j}$ .

#### Kawasaki '73

$$H^*(\mathbb{C}\mathrm{P}^n_{a_0,\ldots,a_n};\mathbb{Z})\cong\mathbb{Z}\oplus\mathbb{Z}\langle w_1\rangle\oplus\cdots\oplus\mathbb{Z}\langle w_n\rangle,$$

where  $\deg w_i = 2i$  and  $w_i \cup w_j = c_{ij} \cdot w_{i+j}$ .

# Example

$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \langle w_1 \rangle \oplus \mathbb{Z} \langle w_2 \rangle$$
,

where  $w_1 \cup w_1 = \mathbf{ab} \cdot w_2$ .

#### Kawasaki '73

$$H^*(\mathbb{C}P^n_{a_0,\ldots,a_n};\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \langle w_1 \rangle \oplus \cdots \oplus \mathbb{Z} \langle w_n \rangle,$$

where  $\deg w_i = 2i$  and  $w_i \cup w_j = c_{ij} \cdot w_{i+j}$ .

## Example

$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \langle w_1 \rangle \oplus \mathbb{Z} \langle w_2 \rangle$$
,

where  $w_1 \cup w_1 = ab \cdot w_2$ .

### In terms of toric geometry









## To be more precise,

For 
$$\Sigma$$
 as above,  $H^k(X_\Sigma; \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0, 4; \\ \mathbb{Z}^n & k = 2; \\ 0 & \text{o.w.} \end{cases}$ 



### To be more precise,

For 
$$\Sigma$$
 as above,  $H^k(X_\Sigma;\mathbb{Z})= \begin{cases} \mathbb{Z} & k=0,4;\\ \mathbb{Z}^n & k=2;\\ 0 & \text{o.w.} \end{cases}$  Hence, questions are...

- 1. Find good "bases"  $\{u_1,\ldots,u_n\}\subset H^2(X_\Sigma;\mathbb{Z})$  and  $v\in H^4(X_\Sigma;\mathbb{Z})$ .
- 2. Find a formula for  $M(X_{\Sigma})=(c_{ij})_{1\leq i,j\leq n}$  with  $H^2(X_{\Sigma};\mathbb{Z})\otimes H^2(X_{\Sigma};\mathbb{Z})\stackrel{\cup}{\to} H^4(X_{\Sigma};\mathbb{Z}),\quad u_i\cup u_j=c_{ij}\cdot v$  "in terms of  $\{(a_1,b_1),\ldots,(a_n,b_n)\}$ ".

# Theorem (Fu–So– $\underline{S}$ , arXiv:2304.03936)

For a toric surface  $X_{\Sigma}$  associated with (-1,0)



 $\exists$  additive ordered basis  $\{u_1,\ldots,u_n\}\subset H^2(X_\Sigma;\mathbb{Z})$  and a generator  $v\in H^4(X_\Sigma;\mathbb{Z})$  such that

$$u_i \cup u_j = \mathbf{a_i b_j} v, \quad \text{i.e., } M(X) = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_1b_2 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1b_n & a_2b_n & \cdots & a_nb_n \end{bmatrix}.$$

$$\Sigma = (-1,0) \qquad (2,-1) \qquad \cdots \rightarrow \qquad H^k(X_{\Sigma}; \mathbb{Z}) = \begin{cases} \mathbb{Z} & k=0; \\ \mathbb{Z} \langle u_1, u_2 \rangle & k=2; \\ \mathbb{Z} \langle v \rangle & k=4; \\ 0 & k=1,3. \end{cases}$$

$$\Sigma = (-1,0) \qquad (2,-1) \qquad --- \Rightarrow \qquad H^k(X_{\Sigma}; \mathbb{Z}) = \begin{cases} \mathbb{Z} & k = 0; \\ \mathbb{Z} \langle u_1, u_2 \rangle & k = 2; \\ \mathbb{Z} \langle v \rangle & k = 4; \\ 0 & k = 1, 3. \end{cases}$$

$$\text{where } \left\{ \begin{array}{l} u_1 \cup u_1 = -2 \cdot v; \\ u_1 \cup u_2 = 4 \cdot v; \\ u_2 \cup u_2 = -2 \cdot v, \end{array} \right. \text{ i.e., } M(X_\Sigma) = \begin{bmatrix} -2 & 4 \\ 4 & -2 \end{bmatrix}.$$

- (1) [Danilov '78, Jurkiewicz '80] For a smooth toric variety  $X_{\Sigma}$ ,
  - $\begin{array}{l} \blacktriangleright \ H_T^*(X_\Sigma;\mathbb{Z}) \cong \mathsf{SR}[\Sigma] := \mathbb{Z}[x_\rho \mid \rho \in \Sigma^{(1)}]/\mathcal{I}, \\ \\ \mathsf{where} \ \mathcal{I} = \left\langle \prod_{\rho \in \Gamma} x_\rho \mid \mathrm{cone}(\rho \mid \rho \in \Gamma) \notin \Sigma \right\rangle. \end{array}$
  - $\begin{array}{l} \blacktriangleright \ H^*(X_\Sigma;\mathbb{Z}) \cong \mathsf{SR}[\Sigma]/\mathcal{J}, \\ \text{where } \mathcal{J} = \Big\langle \sum_{\rho \in \Sigma^{(1)}} \left\langle u_\rho, e_i \right\rangle x_\rho \mid i = 1, \dots, n \Big\rangle. \end{array}$

- (1) [Danilov '78, Jurkiewicz '80] For a smooth toric variety  $X_{\Sigma}$ ,
  - $\begin{array}{l} \blacktriangleright \ H_T^*(X_\Sigma;\mathbb{Z}) \cong \mathsf{SR}[\Sigma] := \mathbb{Z}[x_\rho \mid \rho \in \Sigma^{(1)}]/\mathcal{I}, \\ \\ \mathsf{where} \ \mathcal{I} = \left\langle \prod_{\rho \in \Gamma} x_\rho \mid \mathrm{cone}(\rho \mid \rho \in \Gamma) \notin \Sigma \right\rangle. \end{array}$
  - $H^*(X_{\Sigma}; \mathbb{Z}) \cong \mathsf{SR}[\Sigma]/\mathcal{J},$  where  $\mathcal{J} = \left\langle \sum_{\rho \in \Sigma^{(1)}} \left\langle u_{\rho}, e_i \right\rangle x_{\rho} \mid i = 1, \dots, n \right\rangle.$

### Remark

1. 
$$x_{\rho} \left( \in H^2(X_{\Sigma}; \mathbb{Z}) \right) = \text{Poincar\'e dual of } [D_{\rho}] \left( \in H_{2n-2}(X_{\Sigma}; \mathbb{Z}) \right).$$

- (1) [Danilov '78, Jurkiewicz '80] For a smooth toric variety  $X_{\Sigma}$ ,
  - $\begin{array}{l} \blacktriangleright \ H_T^*(X_\Sigma;\mathbb{Z}) \cong \mathsf{SR}[\Sigma] := \mathbb{Z}[x_\rho \mid \rho \in \Sigma^{(1)}]/\mathcal{I}, \\ \\ \text{where } \mathcal{I} = \left\langle \prod_{\rho \in \Gamma} x_\rho \mid \mathrm{cone}(\rho \mid \rho \in \Gamma) \notin \Sigma \right\rangle. \end{array}$
  - $H^*(X_\Sigma; \mathbb{Z}) \cong \mathsf{SR}[\Sigma]/\mathcal{J},$  where  $\mathcal{J} = \left\langle \sum_{\rho \in \Sigma^{(1)}} \left\langle u_\rho, e_i \right\rangle x_\rho \mid i = 1, \dots, n \right\rangle.$

### Remark

- 1.  $x_{\rho} (\in H^2(X_{\Sigma}; \mathbb{Z})) = \text{Poincar\'e dual of } [D_{\rho}] (\in H_{2n-2}(X_{\Sigma}; \mathbb{Z})).$
- 2. For a toric orbifold  $X_{\Sigma}$ , above formula works over  $\mathbb{Q}$ .

- (1) [Danilov '78, Jurkiewicz '80] For a smooth toric variety  $X_{\Sigma}$ ,
  - $H_T^*(X_{\Sigma}; \mathbb{Z}) \cong SR[\Sigma] := \mathbb{Z}[x_{\rho} \mid \rho \in \Sigma^{(1)}]/\mathcal{I}.$ where  $\mathcal{I} = \left\langle \prod_{\rho \in \Gamma} x_{\rho} \mid \operatorname{cone}(\rho \mid \rho \in \Gamma) \notin \Sigma \right\rangle$ .
  - $\vdash H^*(X_{\Sigma}; \mathbb{Z}) \cong SR[\Sigma]/\mathcal{J},$ where  $\mathcal{J} = \left\langle \sum_{\rho \in \Sigma^{(1)}} \left\langle u_{\rho}, e_{i} \right\rangle x_{\rho} \mid i = 1, \dots, n \right\rangle$ .

#### Remark

- 1.  $x_o \in H^2(X_{\Sigma}; \mathbb{Z}) = \text{Poincaré dual of } [D_o] \in H_{2n-2}(X_{\Sigma}; \mathbb{Z}).$
- 2. For a toric orbifold  $X_{\Sigma}$ , above formula works over  $\mathbb{Q}$ .

$$\Sigma = \begin{array}{c} (-1,0) \\ (0,-1) \end{array}$$
 (2, -1)

$$\Sigma = (-1,0) (-1,2) \qquad H^*(X_{\Sigma}; \mathbb{Q}) = \mathbb{Q}[x_1, x_2, x_3, x_4]/\mathcal{I} + \mathcal{J}$$

$$\mathcal{I} = \langle x_1 x_3, x_2 x_4 \rangle$$

$$\mathcal{J} = \langle 2x_1 - x_2 - x_3, -x_1 + 2x_2 - x_4 \rangle$$

- (2) [Bahri–Sarkar– $\underline{S}$ , 17] For a toric orbifold  $X_{\Sigma}$  (with ' $H^{odd}(X_{\Sigma}; \mathbb{Z}) = 0$ ')
  - $\blacktriangleright \ H_T^*(X_\Sigma;\mathbb{Z}) \cong w\mathsf{SR}[\Sigma] \subseteq \mathsf{SR}[\Sigma],$
  - $H^*(X_{\Sigma}; \mathbb{Z}) \cong w\mathsf{SR}[\Sigma]/\mathcal{J} =: \overline{w\mathsf{SR}}[\Sigma].$

- (2) [Bahri–Sarkar– $\underline{S}$ , 17] For a toric orbifold  $X_{\Sigma}$  (with ' $H^{odd}(X_{\Sigma}; \mathbb{Z}) = 0$ ')
  - $\blacktriangleright \ H_T^*(X_\Sigma;\mathbb{Z}) \cong w\mathsf{SR}[\Sigma] \subseteq \mathsf{SR}[\Sigma],$
  - $H^*(X_{\Sigma}; \mathbb{Z}) \cong w\mathsf{SR}[\Sigma]/\mathcal{J} =: \overline{w\mathsf{SR}}[\Sigma].$

#### Remark

1.  $wSR^2[\Sigma] \cong CDiv_T(X_{\Sigma}) \subseteq Div_T(X_{\Sigma}) \cong SR^2[\Sigma]$ .

- (2) [Bahri–Sarkar– $\underline{S}$ , 17] For a toric orbifold  $X_{\Sigma}$  (with ' $H^{odd}(X_{\Sigma}; \mathbb{Z}) = 0$ ')

  - $H^*(X_{\Sigma}; \mathbb{Z}) \cong w\mathsf{SR}[\Sigma]/\mathcal{J} =: \overline{w\mathsf{SR}}[\Sigma].$

#### Remark

- 1.  $w\mathsf{SR}^2[\Sigma] \cong \mathrm{CDiv}_T(X_\Sigma) \subseteq \mathrm{Div}_T(X_\Sigma) \cong \mathsf{SR}^2[\Sigma].$
- 2. Unlike  $SR[\Sigma]$ , the subring  $wSR[\Sigma]$  is not generated by degree 2.

- (2) [Bahri–Sarkar– $\underline{S}$ , 17] For a toric orbifold  $X_{\Sigma}$  (with ' $H^{odd}(X_{\Sigma}; \mathbb{Z}) = 0$ ')
  - $H_T^*(X_\Sigma; \mathbb{Z}) \cong w\mathsf{SR}[\Sigma] \subseteq \mathsf{SR}[\Sigma],$
  - $H^*(X_{\Sigma}; \mathbb{Z}) \cong w\mathsf{SR}[\Sigma]/\mathcal{J} =: \overline{w\mathsf{SR}}[\Sigma].$

#### Remark

- 1.  $w\mathsf{SR}^2[\Sigma] \cong \mathrm{CDiv}_T(X_\Sigma) \subseteq \mathrm{Div}_T(X_\Sigma) \cong \mathsf{SR}^2[\Sigma].$
- 2. Unlike  $SR[\Sigma]$ , the subring  $wSR[\Sigma]$  is not generated by degree 2.
- 3. Finding 'basis' for each degree of  $w\mathsf{SR}[\Sigma]$  or  $\overline{w\mathsf{SR}}[\Sigma]$  requires case-by-case computations.



•  $w\mathsf{SR}^2[\Sigma]$  is generated by  $\{ax_1-x_2,bx_1-x_3,abx_1\}$ ,



- $w\mathsf{SR}^2[\Sigma]$  is generated by  $\{ax_1-x_2,bx_1-x_3,abx_1\}$ ,
- $\blacktriangleright \ w \mathrm{SR}^4[\Sigma]$  is generated by  $\{a^2b^2x_1^2, abx_1x_2, b^2x_2^2, a^2x_1x_3, x_2x_3\}$



- $w\mathsf{SR}^2[\Sigma]$  is generated by  $\{ax_1-x_2,bx_1-x_3,abx_1\}$ ,
- ▶  $w\mathsf{SR}^4[\Sigma]$  is generated by  $\{a^2b^2x_1^2, abx_1x_2, b^2x_2^2, a^2x_1x_3, x_2x_3\}$



- $w\mathsf{SR}^2[\Sigma]$  is generated by  $\{ax_1-x_2,bx_1-x_3,abx_1\}$ ,
- ▶  $w\mathsf{SR}^4[\Sigma]$  is generated by  $\{a^2b^2x_1^2, abx_1x_2, b^2x_2^2, a^2x_1x_3, x_2x_3\}$



- $w\mathsf{SR}^2[\Sigma]$  is generated by  $\{ax_1-x_2,bx_1-x_3,abx_1\}$ ,
- ▶  $w\mathsf{SR}^4[\Sigma]$  is generated by  $\{a^2b^2x_1^2, abx_1x_2, b^2x_2^2, a^2x_1x_3, x_2x_3\}$
- $\qquad \qquad w\mathsf{SR}[\Sigma]/\mathcal{J} = \overline{w\mathsf{SR}}[\Sigma] = \mathbb{Z} \oplus \mathbb{Z} \left\langle [abx_1] \right\rangle \oplus \mathbb{Z} \left\langle [x_2x_3] \right\rangle$
- ▶ ring structure:  $[abx_1] \cdot [abx_1] = [a^2b^2x_1^2] = ab[x_2x_3].$

#### Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map  $X \to \mathfrak{t}^*.$  Then,

$$X \cong (P \times T^n)/_{\sim}$$

### Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map  $X \to \mathfrak{t}^*.$  Then,

$$X \cong (P \times T^n)/_{\sim},$$



#### Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map  $X \to \mathfrak{t}^*.$  Then,

$$X \cong (P \times T^n)/_{\sim},$$



#### Jurkiewicz, '81

Let X be a projective toric variety and P the image of moment map  $X \to \mathfrak{t}^*.$  Then,

$$X \cong (P \times T^n)/_{\sim}$$













# 2. Cofibration. $(S^3/G \xrightarrow{f} \bigvee S^2 \longrightarrow X)$



# 2. Cofibration. $(S^3/G \xrightarrow{f} \bigvee S^2 \longrightarrow X)$





# 2. Cofibration. $(S^3/G \xrightarrow{f} \bigvee S^2 \longrightarrow X)$



#### (3) For $X_{\Sigma}$ corresponding to



#### (3) For $X_{\Sigma}$ corresponding to



there is a cofibration

$$S^3 \to \bigvee_{i=1}^n S_i^2 \to X_{\Sigma}$$

(3) For  $X_{\Sigma}$  corresponding to



there is a cofibration

$$S^3 \to \bigvee_{i=1}^n S_i^2 \to X_{\Sigma}$$

which gives us:

$$H_2(X_{\Sigma}; \mathbb{Z}) = \mathbb{Z} \left\langle [S_1^2], \dots, [S_n^2] \right\rangle$$

$$H_4(X_{\Sigma}; \mathbb{Z}) = \mathbb{Z} \left\langle [D^4] \right\rangle$$

(3) For  $X_{\Sigma}$  corresponding to



there is a cofibration

$$S^3 \to \bigvee_{i=1}^n S_i^2 \to X_{\Sigma}$$

which gives us:

- $ightharpoonup H^2(X_{\Sigma}; \mathbb{Z}) = \mathbb{Z}\langle u_1, \dots, u_n \rangle$ , where  $\langle u_i, [S_j^2] \rangle = \delta_{ij}$ .
- $ightharpoonup H^4(X_{\Sigma};\mathbb{Z})=\mathbb{Z}\left\langle v
  ight
  angle$ , where  $\left\langle v,[D^4]\right
  angle =1.$

## Summary

So far we have defined two different types of bases:

|                   | Good                 | Bad                  |
|-------------------|----------------------|----------------------|
| $wSR	ext{-}basis$ | Easy to see the      | Hard to find a basis |
|                   | product structure    |                      |
| Cellular basis    | Easy to find a basis | Hard to see the      |
|                   |                      | product structure    |





#### 1. (SR-basis)

$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \overline{w\mathsf{SR}}[\Sigma]$$
  
$$\cong \mathbb{Z} \oplus \mathbb{Z} \left\langle [abx_1] \right\rangle \oplus \mathbb{Z} \left\langle [x_2x_3] \right\rangle / \left\langle [abx_1]^2 - ab[x_2x_3] \right\rangle$$



1. (SR-basis)

$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \overline{w\mathsf{SR}}[\Sigma]$$
  
$$\cong \mathbb{Z} \oplus \mathbb{Z} \left\langle [abx_1] \right\rangle \oplus \mathbb{Z} \left\langle [x_2x_3] \right\rangle / \left\langle [abx_1]^2 - ab[x_2x_3] \right\rangle$$

2. (Cellular basis) 
$$S^3 \to S^2 \to \mathbb{C}\mathrm{P}^2_{1,a,b}$$
 
$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \langle u \rangle \oplus \mathbb{Z} \langle v \rangle \quad \text{(as groups)}$$

$$\Sigma = \qquad \qquad (a,b) \qquad X_{\Sigma} = \mathbb{C}\mathrm{P}^2_{1,a,b}$$

1. (SR-basis)

$$H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \overline{w\mathsf{SR}}[\Sigma]$$
  
$$\cong \mathbb{Z} \oplus \mathbb{Z} \left\langle [abx_1] \right\rangle \oplus \mathbb{Z} \left\langle [x_2x_3] \right\rangle / \left\langle [abx_1]^2 - ab[x_2x_3] \right\rangle$$

2. (Cellular basis)  $S^3 \to S^2 \to \mathbb{C}\mathrm{P}^2_{1,a,b}$   $H^*(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \langle u \rangle \oplus \mathbb{Z} \langle v \rangle \quad \text{(as groups)}$ 

#### Remark

$$\begin{split} \text{As rank}\, H^2(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) &= \operatorname{rank} H^4(\mathbb{C}\mathrm{P}^2_{1,a,b};\mathbb{Z}) = 1, \\ [abx_1] &\leftrightarrow u \quad \text{and} \quad [x_2x_3] \leftrightarrow v. \end{split}$$

(with appropriate choices of orientations on  $S^2$  and  $S^3$ ).





#### In general



#### In general

- $lackbox{ Hence, we have: } X_\Sigma o \mathbb{C}\mathrm{P}^2_{1,a_i,b_i}$



#### In general

- ▶ Hence, we have:  $X_{\Sigma} \to \mathbb{C}\mathrm{P}^2_{1,a_i,b_i}$
- ▶ For a toric morphism  $\phi \colon \Sigma \to \Sigma'$  of simplicial fans, we have:

$$H^{*}(X_{\Sigma'}; \mathbb{Z}) \xrightarrow{\phi^{*}} H^{*}(X_{\Sigma}; \mathbb{Z})$$

$$\downarrow \cong \qquad \qquad \downarrow \cong$$

$$\overline{wSR}[\Sigma'] \xrightarrow{\overline{wSR}(\phi^{*})} \overline{wSR}[\Sigma].$$

#### <u>Lemma</u>

For  $\phi \colon \Sigma \to \Sigma_i$ 



#### Lemma

For  $\phi \colon \Sigma \to \Sigma_i$ 



Then,  $\overline{w} \overline{SR}(\phi^*) \colon \overline{w} \overline{SR}[\Sigma_i] \to \overline{w} \overline{SR}[\Sigma]$  is given by

$$[a_i b_i x_1] \mapsto \left[ \sum_{k=1}^{i-1} a_k b_i y_k + a_i b_i y_i + \sum_{k=i+1}^n a_i b_k y_k \right]$$
$$[x_2 x_3] \mapsto [y_{n+1} y_{n+2}].$$

#### Revisit the main result

### Theorem [Fu-So-<u>S</u>, arXiv:2304.03936]

For a toric surface  $X_{\Sigma}$  associated with (-1,0)



 $\exists$  additive basis  $\{u_1,\dots,u_n\}\subset H^2(X;\mathbb{Z})$  and a generator  $v\in H^4(X;\mathbb{Z})$  such that

$$u_i \cup u_j = \mathbf{a_i b_j} v, \quad \text{i.e., } M(X) = \begin{bmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_1b_2 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_1b_n & a_2b_n & \cdots & a_nb_n \end{bmatrix}.$$

## Sketch of the proof

## Step 1: The case of $\mathbb{C}\mathrm{P}^2_{1,a,b}$

For 
$$\Sigma = \underbrace{(-1,0)}_{(0,-1)}$$

Define  $\{u,v\} \subset H^*(X_{\Sigma};\mathbb{Z})$  such that

$$H^*(X_{\Sigma}; \mathbb{Z}) \xrightarrow{\Phi} \overline{wSR}[\Sigma]$$

$$u \mapsto [abx_1]$$

$$v \mapsto [x_2x_3].$$

Then we have:  $u^2 = \Phi^{-1}([abx_1]^2) = \Phi^{-1}(ab[x_2x_3]) = abv$ .

# Step 2: Diagonal entries of $M(X_{\Sigma})$



# Step 2: Diagonal entries of $M(X_{\Sigma})$



$$\begin{array}{ccc} H^*(\mathbb{C}\mathrm{P}^2_{1,a_i,b_i}) & \stackrel{\phi^*}{\longrightarrow} H^*(X_{\Sigma}) & u & \stackrel{\phi^*}{\longrightarrow} u_i \\ & & \downarrow \cong & \downarrow \\ \hline w \overline{\mathsf{SR}}[\Sigma'] & \stackrel{w \mathsf{SR}(\phi^*)}{\longrightarrow} \overline{w} \overline{\mathsf{SR}}[\Sigma], & [a_i b_i x_1] \end{array}$$

Therefore,

$$u_i \cup u_i = \phi^*(u \cup u)$$
$$= \phi^*(a_i b_i v)$$
$$= a_i b_i \phi^*(v) = a_i b_i v$$

## Step 3: Off-diagonal entries of $M(X_{\Sigma})$















Thank you for your attention.