Seeds with maximal Buchstaber number

Hyeontae Jang(Ajou Univ.)

Joint work with Suyoung Choi(Ajou Univ.)

Buchstaber numbers

K: an (n-1) dimensional simplicial complex on $[m] = \{1, 2, \dots, m\}$.

Buchstaber number

$$s(K) = \max\{r \in \mathbb{N} \mid H^r(\subseteq T^m) \underset{free}{\curvearrowright} \mathcal{Z}_K\}.$$

Theorem (Erokhovets, 2014)

$$1 \le s(K) \le m - n$$

The upper bound Pic(K) = p = m - n is called the Picard number of K.

Freely acting subtori

Let H^p be an p-dimensional freely acting subtorus of T^m on \mathcal{Z}_K .

The quotient $\mathcal{Z}_{K/H^{p}}$ gives

- a quasitoric manifold if K is a polytopal complex,
- a topological toric manifold if *K* is a star-shaped sphere.

 $\{\mathsf{polytopal}\ \mathsf{complex}\} \subsetneq \{\mathsf{star}\text{-}\mathsf{shaped}\ \mathsf{complex}\} \subsetneq \{\mathsf{PL}\ \mathsf{sphere}\}$

Freely acting subtori

Let $T^m \cap \mathcal{Z}_K$.

A subtorus H^p can be written as

$$\{(e^{2\pi i(s_{11}\phi_1+\cdots+s_{1p}\phi_p)},\ldots,e^{2\pi i(s_{m1}\phi_1+\cdots+s_{mp}\phi_p)})\in T^m\mid \phi_j\in\mathbb{R}\}.$$

Define

an $m \times p$ matrix $S = [s_{ij}]$,

a $p \times p$ matrix $S_{\sigma^c} = [s_{ij}]_{i \in \sigma^c, j \in \{1, ..., p\}}$ for each facet σ of K.

Proposition

H freely acts on \mathcal{Z}_K if and only if $\det(S_{\sigma^c})=\pm 1$ for any facet σ of K.

Seeds

 $J = (j_1, \ldots, j_m)$: a positive integer m-tuple.

J-construction

K(J) is the simplicial complex whose minimal non-faces are the set

$$\{\bigcup_{v\in\tau}\{v_1,v_2,\ldots,v_{j_v}\}\mid \tau \text{ is a minimal non-face of } K\}.$$

We can consider K as a subcomplex of K(J) by identifying $v_1 = v$.

$$\textit{MNF}(\textit{K}) = \{\{1,3\},\{1,4\},\{2,4\},\{2,5\},\{3,5\}\}$$

$$\Longrightarrow \textit{MNF}(\textit{K}(2,1,1,1,1)) = \{\{1_1,1_2,3\},\{1_1,1_2,4\},\{2,4\},\{2,5\},\{3,5\}\}$$

K(2,1,1,1,1)

Seeds

Proposition

- (1) K is a PL sphere (polytopal, star-shaped) if and only if so is K(J)
- (2) Pic(K) = Pic(K(J))
- (3) s(K) = s(K(J)) (Ewald, 1986)

Theorem (Choi-Park, 2016)

Any subtorus freely acting on $\mathcal{Z}_{K(J)}$ can be constructed by subtori freely acting on \mathcal{Z}_{K} .

A PL sphere K is called a seed if K = L(J) implies J = (1, 1, ..., 1).

Seed inequality

Theorem (Choi-Park)

 $m \le 2^p - 1$ if K is a seed with $s(K) = p = m - n \ge 3$.

Sketch of the proof

- (1) Let S be an $m \times p$ matrix representing a freely acting subtorus.
- (2) For a seed, the rows of S have to be mutually distinct.
- (3) Then the mod 2 reduction of S should not allow repeated rows.
- (4) $m \leq |\mathbb{Z}_2^p \setminus \mathbb{O}| = 2^p 1$

Seed inequality

Theorem

There exists an (n-1) dimensional seed K on [m] with $s(K)=m-n\geq 3$ if and only if $2\leq n,\ m\leq 2^{m-n}-1,\ m-n\geq 3$.

In particular, the inequality is tight.

This is true even for the class of polytopal complexes.

Therefore, there is a quasitoric manifold over a seed with $2 \le n$, $m \le 2^{m-n}$.

Seeds

I: a 1-simplex

Suspension

$$\Sigma K := K * \partial I$$

Proposition

- (1) K is a PL sphere (polytopal, star-shaped) if and only if so is ΣK
- (2) $Pic(K) + 1 = Pic(\Sigma K)$ and $s(K) + 1 = s(\Sigma K)$
- (3) K is a seed if and only if so is ΣK

Stellar subdivision

Stellar subdivision

The stellar subdivision $Ss_{\sigma}(K)$ at a face σ of K is a subdivision of K with a new vertex v_{σ} in the relative interior of σ .

Proposition

- (1) K is a PL sphere (star-shaped) if and only if so is $Ss_{\sigma}(K)$.
- (2) If K is polytopal, then so is $Ss_{\sigma}(K)$.
- (3) $s(K) + 1 = s(Ss_{\sigma}(K))$ and $Pic(K) + 1 = Pic(Ss_{\sigma}(K))$.
- (4) $Ss_{\{v_1,v_2\}}(K(1,\ldots,1,2,1,\ldots 1))$ is a seed.

Main construction

Choose any subset
$$\sigma = \{v_1, v_2, \dots, v_\ell\} \subset [m]$$
.

Let
$$J_{\sigma}=(j_1,\ldots,j_m)$$
 for $j_{\nu}=\begin{cases} 2, & \text{if } \nu\in\sigma\\ 1, & \text{otherwise.} \end{cases}$

Then σ is a face of $K(J_{\sigma})$.

Theorem

 $Ss_{\sigma}(K(J_{\sigma}))$ is a seed that is not a suspension if K is a seed that is not a suspension and $|\sigma| > 1$.

Main construction

$p \setminus n$	2	3	4	5	6	7	8	9	10	11	12	13	14
			$\partial C^4(7)$ $\Sigma(\partial I^3)^*$		$Ss_{\{1\}}(\partial C^4(7)(2,2,1,,1))$		Ø	Ø		$Ss_{[7]}(\partial C^4(7)(2,\ldots,2))$		Ø	
5	∂P_7	2015	2(01)	200 (1)	55{1}(0 € (1)(2,2,1,,1))					55[7](00 (1)(2,,2))	~	~	~

Remark

- (1) The doubling (that is, J = (2, 2, ..., 2)) of K followed by stellar subdivision from the maximal complex of Picard number p gives a maximal one of Picard number p + 1.
- (2) For p=4, there are four seeds K with s(K)=4. Our construction gives one of them, and proves the polytopality. Are the other three polytopal?

Complete non-singular fans

Theorem

A seed K with Pic(K) = 4 is the underlying complex of a complete non-singular fan if and only if $2 \le n \le 8$.

Our construction gives underlying complexes K of complete non-singular fans only up to n=7 from the seeds of Picard number 3.

Thank you for your attention