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1. Polyhedral and graph products

K a simplicial complex on the set [m] = {1,2,3, . . . ,m}, ∅ ∈ K.
I = {i1, . . . , ik} ∈ K a simplex.

(X ,A) = {(X1,A1), . . . , (Xm,Am)} a sequence of pairs of spaces,
Ai ⊂ Xi .

Given I = {i1, . . . , ik} ⊂ [m], set

(X ,A)I = Y1 × · · · × Ym where Yi =

{
Xi if i ∈ I,
Ai if i /∈ I.
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1. Polyhedral and graph products

The K-polyhedral product of (X ,A) is

(X ,A)K :=
⋃
I∈K

(X ,A)I =
⋃
I∈K

(∏
i∈I

Xi ×
∏
j /∈I

Aj

)
,

where the union is taken inside X1 × · · · × Xm.

Notation: (X ,A)K := (X ,A)K when all (Xi ,Ai) = (X ,A);

XK := (X ,pt)K, XK := (X ,pt)K.
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Example

Let (X ,A) = (S1,pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral
product (S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of
an (m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it
is obtained by removing the top-dimensional cell from the
m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.

Yakov Veryovkin (HSE, SMI RAS, MSU) The Lie algebra associated with... Toronto, August, 2024 4 / 33



Example

Let (X ,A) = (S1,pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral
product (S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of
an (m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it
is obtained by removing the top-dimensional cell from the
m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.

Yakov Veryovkin (HSE, SMI RAS, MSU) The Lie algebra associated with... Toronto, August, 2024 4 / 33



Example

Let (X ,A) = (S1,pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral
product (S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of
an (m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it
is obtained by removing the top-dimensional cell from the
m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.

Yakov Veryovkin (HSE, SMI RAS, MSU) The Lie algebra associated with... Toronto, August, 2024 4 / 33



Example

Let (X ,A) = (S1,pt), where S1 is a circle. Then

(S1)K =
⋃
I∈K

(S1)I ⊂ (S1)m.

When K = {∅, {1}, . . . , {m}} (m disjoint points), the polyhedral
product (S1)K is the wedge (S1)∨m of m circles.

When K consists of all proper subsets of [m] (the boundary ∂∆m−1 of
an (m − 1)-dimensional simplex), (S1)K is the fat wedge of m circles; it
is obtained by removing the top-dimensional cell from the
m-torus (S1)m.

For a general K on m vertices, (S1)∨m ⊂ (S1)K ⊂ (S1)m.

Yakov Veryovkin (HSE, SMI RAS, MSU) The Lie algebra associated with... Toronto, August, 2024 4 / 33



Example
Let (X ,A) = (R,Z). Then

LK := (R,Z)K =
⋃
I∈K

(R,Z)I ⊂ Rm.

When K consists of m disjoint points, LK is a grid in Rm consisting of
all lines parallel to one of the coordinate axis and passing though
integer points.

When K = ∂∆m−1, the complex LK is the union of all integer
hyperplanes parallel to coordinate hyperplanes.
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1. Polyhedral and graph products

Let G = (G1, . . . ,Gm) a sequence of m discrete groups, Gi ̸= {1}.

K a simplicial complex on [m] = {1,2, . . . ,m}.

Definition
The graph product of the groups G1, . . . ,Gm is

GK :=
m

⋆
k=1

Gk
/
(gigj = gjgi for gi ∈ Gi , gj ∈ Gj , {i , j} ∈ K),

where⋆m
k=1 Gk denotes the free product of the groups Gk .

The graph product GK depends only on the 1-skeleton (graph) of K.
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Example

Let Gi = Z. Then GK is the right-angled Artin group

RAK = F (g1, . . . ,gm)
/
(gigj = gjgi for {i , j} ∈ K),

where F (g1, . . . ,gm) is a free group with m generators.

When K is a full simplex, we have RAK = Zm. When K is m points, we
obtain a free group of rank m.

Example

Let Gi = Z2. Then GK is the right-angled Coxeter group

RCK = F (g1, . . . ,gm)
/
(g2

i = 1, gigj = gjgi for {i , j} ∈ K).
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Theorem
Let RAK be a right-angled Artin group.

1 π1((S1)K) ∼= RAK.
2 Both (S1)K and LK = (R,Z)K are aspherical iff K is flag.
3 πi((S1)K) ∼= πi(LK) for i ⩾ 2.
4 π1(LK) is isomorphic to the commutator subgroup RA′

K.

Theorem
Let RCK be a right-angled Coxeter group.

1 π1((RP∞)K) ∼= RCK.
2 Both (RP∞)K and RK = (D1,S0)K are aspherical iff K is flag.
3 πi((RP∞)K) ∼= πi(RK) for i ⩾ 2.
4 π1(RK) is isomorphic to the commutator subgroup RC′

K.
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Example
Let K be an m-cycle (the boundary of an m-gon).
A simple argument with Euler characteristic shows that RK is
homeomorphic to a closed orientable surface of genus
(m − 4)2m−3 + 1.
(This observation goes back to a 1938 work of Coxeter.)

Therefore, the commutator subgroup of the corresponding right-angled
Coxeter group RCK is a surface group.

Similarly, when |K| ∼= S2 (which is equivalent to K being the boundary
of a 3-dimensional simplicial polytope), RK is a 3-dimensional
manifold. Therefore, the commutator subgroup of the corresponding
RCK is a 3-manifold group.
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Theorem (Panov-V)
Let RAK and RCK be the right-angled Artin and Coxeter groups
corresponding to a simplicial complex K.
(a) The commutator subgroup RA′

K is free if and only if K1 is a
chordal graph.

(b) The commutator subgroup RC′
K is free if and only if K1 is a

chordal graph.

Part (a) is the result of Servatius, Droms and Servatius.

The difference between (a) and (b) is that the commutator subgroup
RA′

K is infinitely generated, unless RAK = Zm, while the commutator
subgroup RC′

K is finitely generated.
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Let G be group. The commutator of two elements a,b ∈ G given by the
formula (a,b) = a−1b−1ab.

We refer to the following nested commutator of length k

(qi1 ,qi2 , . . . ,qik ) := (. . . ((qi1 ,qi2),qi3), . . . ,qik ).

as the simple nested commutator of qi1 ,qi2 , . . . ,qik .

Similarly, we define simple nested Lie commutators

[µi1 , µi2 , . . . , µik ] := [. . . [[µi1 , µi2 ], µi3 ], . . . , µik ].
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For any group G and any three elements a,b, c ∈ G, the following
Hall–Witt identities hold:

(a,bc) = (a, c)(a,b)(a,b, c),
(ab, c) = (a, c)(a, c,b)(b, c),

(a,b, c)(b, c,a)(c,a,b) = (b,a)(c,a)(c,b)a(a,b)(a, c)b(b, c)a

(a, c)(c,a)b,

(1)

where ab = b−1ab.

Let H,W ⊂ G be subgroups. Then we define (H,W ) ⊂ G as the
subgroup generated by all commutators (h,w),h ∈ H,w ∈ W . In
particular, the commutator subgroup G′ of the group G is (G,G).

Definition
For any group G, set γ1(G) = G and define inductively
γk+1(G) = (γk (G),G). The resulting sequence of groups
γ1(G), γ2(G), . . . , γk (G), . . . is called the lower central series of G.
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Definition
If H ⊂ G is normal subgroup, i. e. H = g−1Hg for all g ∈ G, we will use
the notation H ◁ G.
In particular, γk+1(G)◁ γk (G), and the quotient group γk (G)/γk+1(G)
is abelian. Denote Lk (G) := γk (G)/γk+1(G) and consider the direct
sum

L(G) :=
+∞⊕
k=1

Lk (G).

Given an element ak ∈ γk (G) ⊂ G, we denote by ak its conjugacy
class in the quotient group Lk (G). If ak ∈ γk (G), al ∈ γl(G), then
(ak ,al) ∈ γk+l(G). Then the Hall–Witt identities imply that L(G) is a
graded Lie algebra over Z (a Lie ring) with Lie bracket
[ak ,al ] := (ak ,al). The Lie algebra L(G) is called the Lie algebra
associated with the lower central series (or the associated Lie algebra)
of G.
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Theorem

There is an isomorphism

Hk (RK;Z) ∼=
⊕

J⊂[m]

H̃k−1(KJ)

for any k ⩾ 0, where H̃k−1(KJ) is the reduced simplicial homology
group of KJ .
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Theorem (Panov-V)

Let RCK be right-angled Coxeter group corresponding to a simplicial
complex K with m vertices. Then the commutator subgroup RC′

K has a
finite minimal set of generators consisting of

∑
J⊂[m] rank H̃0(KJ)

nested commutators

(gi ,gj), (gi ,gj ,gk1), . . . , (gi ,gj ,gk1 ,gk2 , . . . ,gkm−2), (2)

where i < j > k1 > k2 > . . . > kℓ−2, ks ̸= i for all s, and i is the smallest
vertex in a connected component not containing j of the subcomplex
K{k1,...,kℓ−2,j,i}.

Corollary

The free abelian group H1(RK) = RC′
K/RC′′

K of rank∑
J⊂[m] rank H̃0(KJ) has a basis consisting of the images of the iterated

commutators described in Theorem above.
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2. The LCS of a right-angled Coxeter group

Proposition

Let G be a group with generators gi , i ∈ I. The k-th term γk (G) of the
lower central series is generated by simple nested commutators of
length greater than or equal to k in generators and their inverses.

Corollary
Let RCK be a right-angled Coxeter group with generators gi . Then the
group γk (RCK) is generated by commutators of length greater than or
equal to k in generators gi .

Proposition

The square of any element of γk (RCK) is contained in γk+1(RCK).
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Proof.
We use γk instead of γk (RCK) in this proof.
Let a ∈ γk . If k = 1, then a =

∏n
i=1 gki . If k > 1, then a =

∏n
i=1 ai ,

where ai = (bi ,gpi ) or ai = (gpi ,bi), bi ∈ γk−1. We use induction on n.
Let n = 1. The case k = 1 is obvious (because g2

k = 1). If k > 1, then
a = (b,gi) or a = (gi ,b) for some b ∈ γk−1. For a = (b,gi) we have
a2 = (b,gi)(b,gi) = (gi , (b,gi)) ∈ γk+1, and for a = (gi ,b) we have
a2 = (gi ,b)(gi ,b) = (gi , (gi ,b)) ∈ γk+1.
Suppose now the statement is proved for n − 1. Let a =

∏n
i=1 ai and

a2 =
∏n

i=1 ai ·
∏n

i=1 ai . We have:

a1a2 · · · ana1a2 · · · an =

= (a−1
1 , (a2 · · · an)

−1) · (a2 · · · an)a2
1(a2 · · · an)

−1 · (a2 · · · an)
2.

Clearly, the first factor lies in γ2k ⊂ γk+1. The second factor lies in γk+1
as a conjugate to a2

1 (by induction). The last factor also lies in γk+1 by
induction.
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Corollary

L(RCK) is a Lie algebra over Z2.

We denote by FLZ2⟨µ1, µ2, . . . , µn⟩ a free graded Lie algebra over Z2
with n generators µi , where degµi = 1.
For any simplicial complex K we consider the graph Lie algebra over
Z2:

LK := FLZ2⟨µ1, µ2, . . . , µn⟩/([µi , µj ] = 0 for {i , j} ∈ K).

Clearly, LK depends only on the 1-skeleton K1 (a graph), however, as
in the case of right-angled Coxeter groups, it is more convenient for us
to work with simplicial complexes.
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Proposition

There is an epimorphism of Lie algebras φ : LK → L(RCK).

Proof.
L(RCK) is a Lie algebra over Z2, generated by the elements
g i ∈ γ1(RCK)/γ2(RCK), i = 1, . . . ,m. By definition of a free Lie
algebra, we have an epimorphism

φ̃ : FLZ2⟨µ1, µ2, . . . , µn⟩ → L(RCK), µi 7→ g i .

Since there is a relation [g i ,g j ] = 0 for {i , j} ∈ K in the Lie algebra
L(RCK), the epimorphism φ̃ factors through a required epimorphism
φ.

In fact, the homomorphism φ from the proposition above is not
injective, and the Lie algebras LK and L(RCK) are not isomorphic.
This distinguishes the case of right-angled Coxeter groups from the
case of the right-angled Artin groups, where the associated Lie algebra
L(RAK) is isomorphic to the graph Lie algebra over Z.
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Example

Let K consist of two disjoint points, i. e. K = {1,2}. Then
LK = FLZ2⟨µ1, µ2⟩ = FLZ2⟨µ1⟩ ∗ FLZ2⟨µ2⟩ (hereinafter ∗ denotes the
free product of Lie algebras or groups). The lower central series of
RCK = Z2 ∗ Z2 is as follows: γ1(RCK) = Z2 ∗ Z2, and for k ⩾ 2 we
have γk (RCK) ∼= Z is an infinite cyclic group generated by the
commutator (g1,g2,g1, . . . ,g1) of length k . Proposition 2 implies that
γk (RCK)/γk+1(RCK) = Z2 for k > 1, and
γ1(RCK)/γ2(RCK) = Z2 ⊕ Z2. Consider the algebra L(RCK). From the
arguments above, L(RCK) = (Z2 ⊕ Z2)⊕ Z2 ⊕ · · · ⊕ Z2 ⊕ · · · . It is easy
to see that Lk (RCK) ∼= Lk

K for k = 1,2. However,
L3
K
∼= Z2⟨[µ1, µ2, µ1], [µ1, µ2, µ2]⟩, while L3(RCK) ∼= Z2. Therefore,

L3(RCK) ∼= L3
K/([µ1, µ2, µ1] = [µ1, µ2, µ2]).

It follows that the homomorphism φ is not injective.
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Proposition

Let K consist of two disjoint points. Then

L(RCK) ∼= LK
/(

[a, µ1] = [a, µ2], [a, µ1, . . . , µ1︸ ︷︷ ︸
2k+1

,a] = 0, k ⩾ 0
)
,

where a = [µ1, µ2].
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Theorem

Let K be a simplicial complex on [m], let RCK be the right-angled
Coxeter group corresponding to K, and L(RCK) its associated Lie
algebra. Then:
(a) L1(RCK) has a basis g1, . . . ,gm;
(b) L2(RCK) has a basis consisting of the commutators [g i ,g j ] with

i < j and {i , j} /∈ K;
(c) L3(RCK) has a basis consisting of

– the commutators [g i ,g j ,g j ] with i < j and {i , j} /∈ K;
– the commutators [g i ,g j ,gk ] where i < j > k , i ̸= k and i is the

smallest vertex in a connected component of K{i,j,k} not
containing j.
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As a consequence, we obtain a description of the first three
consecutive quotients of the lower central series for a free product of
the groups Z2.

Corollary

Let K be a set of m disjoint points, i. e. RCK = Z2⟨g1⟩ ∗ . . . ∗ Z2⟨gm⟩.
Then:
(a) L1(RCK) has a basis g1, . . . ,gm;
(b) L2(RCK) has a basis consisting of the commutators [g i ,g j ] with

i < j ;
(c) L3(RCK) has a basis consisting of

– the commutators [g i ,g j ,g j ] with i < j ;
– the commutators [g i ,g j ,gk ] with i < j > k, i ̸= k.
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Example
Consider simplicial complexes on 3 vertices.

Let K =
r r r
1 2 3 . Then L3(RCK) has a basis consisting of 5

commutators:
[g1,g2,g2], [g2,g3,g3], [g1,g3,g3], [g1,g3,g2], [g2,g3,g1].

Let K =
r r r
1 2 3 . Then L3(RCK) has a basis consisting of 3

commutators: [g2,g3,g3], [g1,g3,g3], [g1,g3,g2].

Let K =
r r r
1 2 3 . Then L3(RCK) is generated by the commutator

[g1,g3,g3].
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Proof of theorem
To simplify the notation we write Lk instead of Lk (RCK) and γk instead
of γk (RCK). Statement (a) follows from the fact that

L1 = γ1/γ2 = RCK/RC′
K = Zm

2

with basis g1, . . . ,gm.
We prove statement (b). Consider the abelianization map

φab : RC′
K → RC′

K/RC′′
K = γ2/γ

′
2.

The group RC′
K/RC′′

K = H1(RK) is free abelian (above).
Consider L2 = γ2/γ3. The group L2 is a Z2-module (see above), i. e.
L2 = ZM

2 for some M ∈ N. We have a sequence of nested normal
subgroups

γ′2 ◁ γ4 ◁ γ3 ◁ γ2.

Consider the exact sequence of abelian groups:

0 −→ γ3/γ
′
2

ψ−→ γ2/γ
′
2 −→ γ2/γ3 −→ 0.

∥ ∥ ∥
ZN ZN ZM

2
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Recall from Corollary above that the free abelian group γ2/γ
′
2 = ZN

has a basis consisting of the images of the iterated commutators with
all different indices described in Theorem above. The images of the
commutators of length ⩾ 3 are contained in the subgroup
γ3/γ

′
2 ⊂ γ2/γ

′
2. The group γ3/γ

′
2 also contains commutators of length 3

with duplicate indices, i. e. of the form (gj ,gi ,gi) = (gi ,gj)
2. Therefore,

the homomorphism ψ acts by the formula:

ψ((gi ,gj ,gk1 ,gk2 , . . . ,gkm−2)) = (gi ,gj ,gk1 ,gk2 , . . . ,gkm−2), m ⩾ 3,

ψ((gj ,gi ,gi)) = (gi ,gj)
2
,

where the indices i , j , k1, . . . , km−2 are all different. The elements
(gj ,gi ,gi) with i < j , {i , j} /∈ K, and the elements
(gi ,gj ,gk1 ,gk2 , . . . ,gkm−2),m ⩾ 3, with the condition on the indices from
theorem above form a basis in a free abelian group γ3/γ

′
2.

It follows that the Z2-module L2 = γ2/γ3 has a basis consisting of the
elements (gi ,gj) = [g i ,g j ] with i < j and {i , j} /∈ K, proving (b).
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We prove statement (c). Consider L3 = γ3/γ4. The group L3 is a
Z2-module (see above), i. e. L3 = ZM

2 for some M ∈ N.
Consider the exact sequence of abelian groups:

0 −→ γ4/γ
′
2

χ−→ γ3/γ
′
2 −→ γ3/γ4 −→ 0.

∥ ∥ ∥
ZN ZN ZM

2

For the free abelian group γ3/γ
′
2, we will use the basis constructed in

the proof of statement (b). Elements of this basis corresponding to
commutators of length ⩾ 4 are contained in γ4/γ

′
2. The group γ4/γ

′
2

also contains commutators of length 4 with repeated indices. These
commutators have one of the following nine types, which we divide into
two types A and B for convenience:

A = {(gi ,gj ,gj ,gj), (gi ,gj ,gj ,gi), (gi ,gj ,gi ,gj),

(gi ,gj ,gi ,gi), (gi ,gj ,gi ,gk ), (gi ,gj ,gj ,gk )},
B = {(gi ,gj ,gk ,gj), (gi ,gj ,gk ,gi), (gi ,gj ,gk ,gk )}.
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Note that

(gi ,gj ,gj ,gj) = ((gj ,gi) · (gj ,gi),gj) =

= ((gj ,gi),gj)·(((gj ,gi),gj), (gj ,gi))·((gj ,gi),gj) ≡ (gj ,gi ,gj)
2 mod γ′2,

because (((gj ,gi),gj), (gj ,gi)) ∈ γ′2. Here in the second identity we
used Hall-Witt commutator identity. A similar decomposition holds for
other commutators of type A, for example,

(gi ,gj ,gi ,gk ) = (gj ,gi ,gk )
2 mod γ′2.

Now consider the commutators of type B. We will need the following
commutator identities. For any a,b, c,d ∈ γ1 we have:

(a,b)(c,d) ≡ (c,d)(a,b) mod γ′2. (3)

It follows that the last of the Hall-Witt identities takes the following form
modulo γ′2:

(a,b, c)(b, c,a)(c,a,b) ≡ 1 mod γ′2. (4)
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Furthermore, the following identity was obtained in (Panov-V):

(gq, (gp, x))=(gq, x)(x , (gp,gq))(gq,gp)(x ,gp)

(gp, (gq, x))(x ,gq)(gp,gq)(gp, x).

If x ∈ γ2, then the previous identity and identity (3) imply

(gq, (gp, x)) ≡ (gp, (gq, x)) mod γ′2. (5)

To simplify the notation, we write i instead of gi . From (1) and (4) we
obtain

(gi ,gj ,gk ,gi) = (((i , j), k), i) ≡ ((i , (i , j)), k)−1 · ((k , i), (i , j))−1 ≡
≡ (k , (i , (i , j))) = (k , ((i , j), i)−1) = (k , (j , i)−2) =

= (k , (j , i)−1) · (k , (j , i)−1) · ((k , (i , j)−1), (i , j)−1) ≡
≡ (k , (j , i)−1)2 = (gi ,gj ,gk )

−2 mod γ′2,

(gi ,gj ,gk ,gj) = (((i , j), k), j) ≡ ((j , (i , j)), k)−1 · ((k , j), (i , j))−1 ≡
≡ (k , (j , (i , j))) = (k , ((i , j), j)−1) = (k , (j , i)−2) ≡ (gi ,gj ,gk )

−2 mod γ′2.
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The last commutator of type B requires a lengthier calculation:

(gi ,gj ,gk ,gk ) ≡1 (j , i , k)·(i , j , k)·(k , i , k)·(i , k , k)·((k , j)i , k)·((j , k)i , k)·
· ((i , k)j , k) · ((k , i)j , k) · (k , (j , (k , i)))−1 · (k , (i , (j , k)))−1 ≡2

≡2 (k , (j , (k , i)))−1·(k , (i , (j , k)))−1 ≡3 (j , (k , (k , i)))−1·(i , (k , (j , k)))−1 =

= (j , (i , k)−2)−1 · (i , (k , j)−2)−1 ≡ (k , i , j)2 · (j , k , i)2 ≡
≡ (gi ,gj ,gk )

−2 mod γ′2.

Here is the identity ≡1 is obtained with help of the algorithm written by
the author in Wolfram Mathematica using commutator identities (1).
The identity ≡2 follows from the relations (a,b) · (a−1,b) = (b,a,a−1)
and (b,a,a−1) ≡ 1 mod γ′2, if a ∈ γ2.
The identity ≡3 follows from (5).
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It follows that the homomorphism χ : γ4/γ
′
2 → γ3/γ

′
2 acts by the

formula:

χ((gi ,gj ,gk1 ,gk2 , . . . ,gkm−2)) = (gi ,gj ,gk1 ,gk2 , . . . ,gkm−2), m ⩾ 4,

χ((gj ,gi ,gi ,gj)) = ((gi ,gj),gj)
2
,

χ((gj ,gi ,gj ,gk )) = ((gi ,gj),gk )
2
,

χ((gi ,gj ,gk ,gk )) = ((gi ,gj),gk )
−2
.

where the indices corresponding to a different letters are different.
Thus, the Z2-module L3 = γ3/γ4 has a basis consisting of the
elements specified in the theorem.
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Thank you for you attention!

Yakov Veryovkin (HSE, SMI RAS, MSU) The Lie algebra associated with... Toronto, August, 2024 33 / 33


