Homotopy Types of Toric Orbifolds from Weyl Polytopes

Tao Gong

Western University

Workshop on Toric Topology, Toronto August 2024

Table of Contents

1 Main Result

2 Toric Varieties from Polytopes

3 Root Systems and Weyl Polytopes

4 The Homotopy Equivalence

Main Result

A **Weyl group** *W* acts linearly on a real Euclidean space *V*. *P* is the convex hull of the *W*-orbit of a well-chosen point of *V*. *P* and *P/W* are (identified with) polytopes lying in *V*. There are associated **toric varieties** X_P and $X_{P/W}$.

Main Result

- A **Weyl group** *W* acts linearly on a real Euclidean space *V*.
- *P* is the convex hull of the *W*-orbit of a well-chosen point of *V*.
- *P* and *P/W* are (identified with) polytopes lying in *V*.
- There are associated **toric varieties** X_P and $X_{P/W}$.

Theorem

There is a homotopy equivalence Φ : $X_P/W \to X_{P/W}$ for any Lie type.

Main Result

- A **Weyl group** *W* acts linearly on a real Euclidean space *V*.
- *P* is the convex hull of the *W*-orbit of a well-chosen point of *V*.
- *P* and *P/W* are (identified with) polytopes lying in *V*.
- There are associated **toric varieties** X_P and $X_{P/W}$.

Theorem

There is a homotopy equivalence Φ : $X_P/W \to X_{P/W}$ for any Lie type.

- By [Blume'15], $X_P/W \cong X_{P/W}$ as varieties for Lie types A, B, C .
- By [Horiguchi-Masuda-Shareshian-Song'21], for Lie types *A*, *B*, *C*, *D*, $H^*(X_P/W_K; \mathbb{Q}) \cong H^*(X_{P/W_K}; \mathbb{Q})$ for any parabolic subgroup W_K . [Song'22] generalized the isomorphism to symmetric polygons.

Example (of Lie type *A*1)

In \mathbb{R} , $W = \langle s : x \mapsto -x \rangle$, $P = [-1, 1]$, and $P/W \cong [0, 1]$.

Table of Contents

2 Toric Varieties from Polytopes

3 Root Systems and Weyl Polytopes

4 The Homotopy Equivalence

Toric Varieties from Polytopes

Given a lattice *M* of rank *n*, its dual lattice *N* and an *n*-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet *F* of *P* has a normal vector I_F in *N*_R := *N* ⊗_Z R, which is integral, primitive and pointing inside the polytope.

Toric Varieties from Polytopes

Given a lattice *M* of rank *n*, its dual lattice *N* and an *n*-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet *F* of *P* has a normal vector I_F in *N*_R := *N* ⊗_Z R, which is integral, primitive and pointing inside the polytope.

Define the **normal fan** Σ*^P* whose cones are generated by those sets of normal vectors $I_{F_{i_1}}, I_{F_{i_2}}, \cdots, I_{F_{i_k}}$ whose corresponding facets $F_{i_1}, F_{i_2}, \cdots, F_{i_k}$ have non-empty intersection in *P*.

Toric Varieties from Polytopes

Given a lattice *M* of rank *n*, its dual lattice *N* and an *n*-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet *F* of *P* has a normal vector I_F in $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, which is integral, primitive and pointing inside the polytope.

Define the **normal fan** Σ*^P* whose cones are generated by those sets of normal vectors $I_{F_{i_1}}, I_{F_{i_2}}, \cdots, I_{F_{i_k}}$ whose corresponding facets $F_{i_1}, F_{i_2}, \cdots, F_{i_k}$ have non-empty intersection in *P*.

Each cone *σ* in Σ_P corresponds to an affine complex toric variety X_σ , and these affine varieties fit together to form an algebraic variety *XP*.

Topological Models

 $\mathcal{S}_N := \mathcal{N}_{\mathbb{R}}/N \cong N \otimes_{\mathbb{Z}} \mathcal{S}^1$. There is an \mathcal{S}_N -equivariant homeomorphism

$$
X_P \cong (S_N \times P) / \sim,
$$

where (*t*1*, p*1) *∼* (*t*2*, p*2) iff *p*¹ = *p*² lying in the relative interior of some face F , and t_1 , t_2 are congruent modulo the subtorus $S_{{\sf N}(\sigma_{\rho_1})}$ of $S_{{\sf N}}$ for the $\mathsf{cone}\ \sigma_{p_1} \in \mathsf{\Sigma}_P$ corresponding to the face $\mathsf F.$

Topological Models

 $\mathcal{S}_N := \mathcal{N}_{\mathbb{R}}/N \cong N \otimes_{\mathbb{Z}} \mathcal{S}^1$. There is an \mathcal{S}_N -equivariant homeomorphism

$$
X_P \cong (S_N \times P) / \sim,
$$

where (*t*1*, p*1) *∼* (*t*2*, p*2) iff *p*¹ = *p*² lying in the relative interior of some face F , and t_1 , t_2 are congruent modulo the subtorus $S_{{\sf N}(\sigma_{\rho_1})}$ of $S_{{\sf N}}$ for the $\mathsf{cone}\ \sigma_{p_1} \in \mathsf{\Sigma}_P$ corresponding to the face $\mathsf F.$

Group Action

If $G \cap N$ with $G \cap P \subset M_{\mathbb{R}}$, then $G \cap \Sigma_P$ and $G \cap X_P$.

Lemma *For any g ∈ G, the following diagram is commutative:* $X_P \stackrel{=}{\longrightarrow}$ $(S_N \times P)$ / \sim $X_P \longrightarrow \left(S_N \times P\right)/\sim.$ *∼*= *g* $|g \times g^{-1}$ *∼*=

Table of Contents

In an *n*-dimensional real Euclidean space (*V,h·, ·i*), a finite set *R* of non-zero vectors (**roots**), is a **root system** if

- ρ $R \cap \mathbb{R}\alpha = {\alpha, -\alpha}$, $\forall \alpha \in R$;
- $\mathsf{s}_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ *n*_{*a*,α*i*</sup> *α ε R*, ∀*α*, *β* \in *R*;}
- 2*hβ,αi* $\frac{2\langle \rho, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

In an *n*-dimensional real Euclidean space (*V,h·, ·i*), a finite set *R* of non-zero vectors (**roots**), is a **root system** if

- ρ $R \cap \mathbb{R}\alpha = {\alpha, -\alpha}$, $\forall \alpha \in R$;
- $\mathsf{s}_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ *n*_{*a*,α*i*</sup> *α ε R*, ∀*α*, *β* \in *R*;} 2*hβ,αi* $\frac{2\langle \rho, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** ∆ *⊂ R* such that each root of *R* can be written as a unique Z-linear combination of simple roots. Implicitly *R* is **of rank** *n*, that is, $\Delta = {\alpha_1, \alpha_2, \dots, \alpha_n}$.

In an *n*-dimensional real Euclidean space (*V,h·, ·i*), a finite set *R* of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $\mathsf{s}_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ *n*_{*a*,α*i*</sup> *α ε R*, ∀*α*, *β* \in *R*;} 2*hβ,αi* $\frac{2\langle \rho, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** ∆ *⊂ R* such that each root of *R* can be written as a unique Z-linear combination of simple roots. Implicitly *R* is **of rank** *n*, that is, $\Delta = {\alpha_1, \alpha_2, \dots, \alpha_n}$.

Weyl group $W := \langle s_i := s_{\alpha_i} | i \in [n] \rangle$ where $[n] := \{1, 2, \ldots, n\}.$

In an *n*-dimensional real Euclidean space (*V,h·, ·i*), a finite set *R* of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $\mathsf{s}_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$ *n*_{*a*,α*i*</sup> *α ε R*, ∀*α*, *β* \in *R*;} 2*hβ,αi* $\frac{2\langle \rho, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** ∆ *⊂ R* such that each root of *R* can be written as a unique Z-linear combination of simple roots. Implicitly *R* is **of rank** *n*, that is, $\Delta = {\alpha_1, \alpha_2, ..., \alpha_n}$.

Weyl group $W := \langle s_i := s_{\alpha_i} | i \in [n] \rangle$ where $[n] := \{1, 2, \ldots, n\}.$

A subset *I* ⊂ [*n*] determines a **parabolic subgroup** $W_I := \langle s_i | i \in I \rangle$.

Example (of Lie type A_2)

 $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$ $\alpha_1 = (1, -1, 0), \ \alpha_2 = (0, 1, -1).$ $W \cong S_3 \curvearrowright V$ by permuting coordinates of \mathbb{R}^3 . $H₂$ H_1 α_1 $\alpha_1 + \alpha_2$ *−α*² *−α*¹ *− α*² *−α*¹ $\rightarrow \alpha_2$ *R* = { $\pm \alpha_1, \pm \alpha_2, \pm (\alpha_1 + \alpha_2)$ }*.* $s_2(\alpha_1) = \alpha_1 - \frac{2\langle \alpha_1, \alpha_2 \rangle}{\langle \alpha_2, \alpha_2 \rangle}$ $\frac{\alpha_1(\alpha_1,\alpha_2)}{\langle \alpha_2,\alpha_2 \rangle} \alpha_2 = \alpha_1 + \alpha_2.$ $W \curvearrowright \mathbb{Z}$ *Span* (R) .

Weyl Polytopes and Quotient Polytopes

The **fundamental chamber** is

$$
C:=\{x\in V|\ \langle x,\alpha_k\rangle>0,\ \forall k\in[n]\}.
$$

Theorem (Humphreys'92, Theorem 1.12)

C is a fundamental domain for the action of W on V, i.e., each x ∈ V lies i *n* W (x') for some unique $x' \in \overline{C}$.

Weyl Polytopes and Quotient Polytopes

The **fundamental chamber** is

$$
C:=\{x\in V|\ \langle x,\alpha_k\rangle>0,\ \forall k\in[n]\}.
$$

Theorem (Humphreys'92, Theorem 1.12)

C is a fundamental domain for the action of W on V, i.e., each x ∈ V lies i *n* W (x') for some unique $x' \in \overline{C}$.

Fix a point $a \in C$, define the **Weyl polytope** $P := Conv(W(a))$. The quotient $P/W \cong P \cap \overline{C}$ is a polytope.

 990
14 / 24 $\mathcal{A}(\Box\rightarrow\mathcal{A})\oplus\mathcal{B}\rightarrow\mathcal{A}(\Box\rightarrow\mathcal{A})\oplus\mathcal{B}\rightarrow\mathcal{A}(\Box\rightarrow\mathcal{B})$

Face Structures

Let $F_i := Conv\left(W_{[n]\backslash \{i\}}(a) \right)$, $H_i := (\alpha_i)^\perp$ for $i \in [n]$.

Lemma (faces of *P*)

Define $Λ := ∪$ *I⊂*[*n*] $\{I\}\times \frac{W}{W_{[n]\setminus I}},$ then there is a bijection between Λ and the *set of all faces of P, assigning* (I, s) *to* $s(\bigcap_{i \in I}F_i)$ *.*

Lemma (faces of *P/W*)

Define $H_I F_J := (\cap_{i \in I} H_i) \cap (\cap_{j \in J} F_j)$, then $H_I F_J \cap \overline{C}$ gives out bijectively all *faces of P* \cap \overline{C} *as I*, *J* range among disjoint subsets of $[n]$.

[Vinberg'91] studied the face structure of *P*, [Burrull-Gui-hu'24] studied that of *P/W*, and [Horiguchi-Masuda-Shareshian-Song'21] studied that of *P/W^K* for Lie types *A, B, C, D*.

Table of Contents

Lattice Settings

Let M be the lattice of roots $\mathbb{Z}Span\left(\left\{ \alpha_{i}\right\} _{i\in[n]} \right)$, N be the lattice of ${\sf coweights} \ \mathbb{Z} Span\Big(\{\omega_i^\vee\}_{i\in [n]}\Big).$

Choose $a \in C \cap M$, we consider $P = Conv(W(a))$ in $M_{\mathbb{R}} = V$, and its normal vectors in $N_{\mathbb{R}} = V$.

We write *σ* for a cone of Σ*P*, and *σ*[*n*] for a cone of Σ*P/W*. For a point *p* in *P* (resp. *P ∩ C*), the cone *σ^p* (resp. *σ*[*n*]*,^p*) corresponds to the face of *P* (resp. $P \cap \overline{C}$) whose relative interior contains *p*.

The Equivalent Description

Lemma

Identify X^P with ∪ *p∈P S^N SN*(*σp*) *× {p}, then XP/W is homeomorphic to*

$$
\frac{S_N \times (P \cap \overline{C})}{\sim_{ed}}
$$

where (*t*1*, p*1) *∼ed* (*t*2*, p*2) *iff p*¹ = *p*² *lying in the minimal face HIF^J ∩ C of P* ∩ \overline{C} , and t_1 , t_2 represent the same element of $\frac{S_N}{S_{N(\sigma_{p_1})}}/W_I$.

The Map Φ

The following diagram is commutative:

$$
S_N \times (P \cap \overline{C}) \longrightarrow \longrightarrow_{\text{max}(P \cap \overline{C})} \frac{S_N \times (P \cap \overline{C})}{\sim_{\text{red}}} \cong X_{P/W}
$$

The Map Φ

The following diagram is commutative:

$$
S_N \times (P \cap \overline{C}) \longrightarrow \longrightarrow_{\sim_{\text{mod}}} \frac{S_N \times (P \cap \overline{C})}{\sim} \cong X_{P/W}
$$

Theorem (Smale'57)

Suppose X, Y are (homeomorphic to) compact simplicial complexes, f : *X → Y is onto. For each y ∈ Y, f−*¹ (*y*) *is locally k-connected and k-connected.*

Then the induced homomorphism $f_* : \pi_r(X) \to \pi_r(Y)$ *is an isomorphism for* $0 \le r \le k$, onto for $r = k + 1$.

> メロト メタト メミト メミト 造 2990 20 / 24

 $^{21/24}$

Fibers of Φ

Lemma

Suppose that [*t, p*] *is a point of XP/W, and p lies in the relative interior of some face* $H_1F_J \cap \overline{C}$ *. Then the fiber of* Φ *is (locally) contractible:*

$$
\Phi^{-1}([t,\rho])\cong \frac{S_{\mathsf{N}(\sigma_{[n],p})}}{S_{\mathsf{N}(\sigma_p)}}\bigg/\mathsf{W}_{\mathsf{I}}\cong \frac{Span\hspace{0.04cm}(\{\alpha_i\}_{i\in \mathsf{I}})}{ \mathcal{SP}_{\mathsf{I},\mathsf{J}}^\vee}\bigg/\mathsf{W}_{\mathsf{I}},
$$

where $\mathcal{SP}_{l,J}^{\vee}:=\mathsf{Span}\left(\{\alpha_i\}_{i\in I}\right)\bigcap \left(N+\mathsf{Span}\left(\{\omega_j^{\vee}\}_{j\in J}\right)\right)$.

Proof Sketch (of case *I* = [*n*]).

$$
\Phi^{-1}([t,p]) = S_N/W \cong \frac{\overline{A}}{N/\mathcal{Q}^{\vee}} = \frac{\text{polytope}}{\text{finite affine transformations}}.
$$

 $\leftarrow \Box \rightarrow \rightarrow \leftarrow \Box \overline{\partial} \rightarrow \rightarrow \leftarrow \Xi \rightarrow \rightarrow \leftarrow \Xi \rightarrow$ È 2990 22 / 24

 \Box

Generalization

For $K \subset [n]$, $W_K \cap P$, and P/W_K is a polytope contained in *V*.

Theorem

There is a homotopy equivalence Φ_K : $X_P/W_K \to X_{P/W_K}$.

Question ([Horiguchi-Masuda-Shareshian-Song'21])

Is there an isomorphism between XP/W^K and XP/W^K ?

Thank You!