Homotopy Types of Toric Orbifolds from Weyl Polytopes

Tao Gong

Western University

Workshop on Toric Topology, Toronto August 2024

Table of Contents

- Main Result
- 2 Toric Varieties from Polytopes
- 3 Root Systems and Weyl Polytopes
- 4 The Homotopy Equivalence

Main Result

A **Weyl group** W acts linearly on a real Euclidean space V.

P is the convex hull of the W-orbit of a well-chosen point of V.

P and P/W are (identified with) polytopes lying in V.

There are associated **toric varieties** X_P and $X_{P/W}$.

Main Result

A **Weyl group** W acts linearly on a real Euclidean space V.

P is the convex hull of the W-orbit of a well-chosen point of V.

P and P/W are (identified with) polytopes lying in V.

There are associated **toric varieties** X_P and $X_{P/W}$.

Theorem

There is a homotopy equivalence $\Phi: X_P/W \to X_{P/W}$ for any Lie type.

Main Result

A **Weyl group** W acts linearly on a real Euclidean space V.

P is the convex hull of the W-orbit of a well-chosen point of V.

P and P/W are (identified with) polytopes lying in V.

There are associated **toric varieties** X_P and $X_{P/W}$.

Theorem

There is a homotopy equivalence $\Phi: X_P/W \to X_{P/W}$ for any Lie type.

By [Blume'15], $X_P/W \cong X_{P/W}$ as varieties for Lie types A, B, C.

By [Horiguchi-Masuda-Shareshian-Song'21], for Lie types $A, B, C, D, H^*(X_P/W_K; \mathbb{Q}) \cong H^*(X_{P/W_K}; \mathbb{Q})$ for any parabolic subgroup W_K . [Song'22] generalized the isomorphism to symmetric polygons.

Example (of Lie type A_1)

In \mathbb{R} , $W = \langle s : x \mapsto -x \rangle$, P = [-1, 1], and $P/W \cong [0, 1]$.

Table of Contents

- Main Result
- 2 Toric Varieties from Polytopes
- 3 Root Systems and Weyl Polytopes
- 4 The Homotopy Equivalence

Toric Varieties from Polytopes

Given a lattice M of rank n, its dual lattice N and an n-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet F of P has a normal vector I_F in $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, which is integral, primitive and pointing inside the polytope.

Toric Varieties from Polytopes

Given a lattice M of rank n, its dual lattice N and an n-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet F of P has a normal vector I_F in $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, which is integral, primitive and pointing inside the polytope.

Define the **normal fan** Σ_P whose cones are generated by those sets of normal vectors $I_{F_{i_1}}, I_{F_{i_2}}, \cdots, I_{F_{i_k}}$ whose corresponding facets $F_{i_1}, F_{i_2}, \cdots, F_{i_k}$ have non-empty intersection in P.

Toric Varieties from Polytopes

Given a lattice M of rank n, its dual lattice N and an n-dimensional lattice polytope $P \subset M_{\mathbb{R}} := M \otimes_{\mathbb{Z}} \mathbb{R}$, each facet F of P has a normal vector I_F in $N_{\mathbb{R}} := N \otimes_{\mathbb{Z}} \mathbb{R}$, which is integral, primitive and pointing inside the polytope.

Define the **normal fan** Σ_P whose cones are generated by those sets of normal vectors $I_{F_{i_1}}, I_{F_{i_2}}, \cdots, I_{F_{i_k}}$ whose corresponding facets $F_{i_1}, F_{i_2}, \cdots, F_{i_k}$ have non-empty intersection in P.

Each cone σ in Σ_P corresponds to an affine complex toric variety X_{σ} , and these affine varieties fit together to form an algebraic variety X_P .

Example

In \mathbb{R} , P = [-1, 1].

$$\Sigma_P \qquad \xleftarrow{(-\infty,0]} \qquad {0} \qquad [0,\infty) \qquad \longrightarrow$$

$$\mathcal{C}_{\sigma}$$
 \mathbb{C} \mathbb{C}^{*} \mathbb{C}

$$X_P = colim \ \left(\mathbb{C} \stackrel{\mathsf{x} \mapsto \mathsf{x}^{-1}}{\longleftarrow} \mathbb{C}^* \stackrel{\mathsf{x} \mapsto \mathsf{x}}{\longrightarrow} \mathbb{C} \right) \cong S^2$$

Topological Models

 $S_N := N_{\mathbb{R}}/N \cong N \otimes_{\mathbb{Z}} S^1$. There is an S_N -equivariant homeomorphism

$$X_P \cong (S_N \times P) / \sim,$$

where $(t_1, p_1) \sim (t_2, p_2)$ iff $p_1 = p_2$ lying in the relative interior of some face F, and t_1 , t_2 are congruent modulo the subtorus $S_{N(\sigma_{p_1})}$ of S_N for the cone $\sigma_{p_1} \in \Sigma_P$ corresponding to the face F.

Topological Models

 $S_N := N_{\mathbb{R}}/N \cong N \otimes_{\mathbb{Z}} S^1$. There is an S_N -equivariant homeomorphism

$$X_P \cong (S_N \times P) / \sim$$
,

where $(t_1, p_1) \sim (t_2, p_2)$ iff $p_1 = p_2$ lying in the relative interior of some face F, and t_1 , t_2 are congruent modulo the subtorus $S_{N(\sigma_{p_1})}$ of S_N for the cone $\sigma_{p_1} \in \Sigma_P$ corresponding to the face F.

Example

In \mathbb{R} , P = [-1, 1].

Group Action

If $G \curvearrowright N$ with $G \curvearrowright P \subset M_{\mathbb{R}}$, then $G \curvearrowright \Sigma_P$ and $G \curvearrowright X_P$.

Lemma

For any $g \in G$, the following diagram is commutative:

$$X_P \stackrel{\cong}{\longrightarrow} (S_N \times P) / \sim$$
 $g \downarrow \qquad \qquad \downarrow g \times g^{-1}$
 $X_P \stackrel{\cong}{\longrightarrow} (S_N \times P) / \sim .$

Table of Contents

- Main Result
- 2 Toric Varieties from Polytopes
- 3 Root Systems and Weyl Polytopes
- 4 The Homotopy Equivalence

In an *n*-dimensional real Euclidean space $(V, \langle \cdot, \cdot \rangle)$, a finite set R of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $s_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \in R, \ \forall \alpha, \beta \in R;$
- $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

In an *n*-dimensional real Euclidean space $(V, \langle \cdot, \cdot \rangle)$, a finite set R of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $s_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \in R$, $\forall \alpha, \beta \in R$;
- $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** $\Delta \subset R$ such that each root of R can be written as a unique \mathbb{Z} -linear combination of simple roots.

Implicitly *R* is **of rank** *n*, that is, $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$.

In an *n*-dimensional real Euclidean space $(V, \langle \cdot, \cdot \rangle)$, a finite set R of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $s_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \in R, \ \forall \alpha, \beta \in R;$
- $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** $\Delta \subset R$ such that each root of R can be written as a unique \mathbb{Z} -linear combination of simple roots.

Implicitly R is **of rank** n, that is, $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$.

Weyl group $W := \langle s_i := s_{\alpha_i} | i \in [n] \rangle$ where $[n] := \{1, 2, \dots, n\}$.

In an *n*-dimensional real Euclidean space $(V, \langle \cdot, \cdot \rangle)$, a finite set R of non-zero vectors (**roots**), is a **root system** if

- $R \cap \mathbb{R}\alpha = \{\alpha, -\alpha\}, \forall \alpha \in R;$
- $s_{\alpha}(\beta) := \beta \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \in R, \ \forall \alpha, \beta \in R;$
- $\frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} \in \mathbb{Z}$.

There is a **simple system** $\Delta \subset R$ such that each root of R can be written as a unique \mathbb{Z} -linear combination of simple roots.

Implicitly *R* is **of rank** *n*, that is, $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$.

Weyl group $W := \langle s_i := s_{\alpha_i} | i \in [n] \rangle$ where $[n] := \{1, 2, ..., n\}$.

A subset $I \subset [n]$ determines a **parabolic subgroup** $W_I := \langle s_i | i \in I \rangle$.

Example (of Lie type A_2)

$$V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}.$$

$$\alpha_1 = (1, -1, 0), \ \alpha_2 = (0, 1, -1).$$

 $W\cong S_3 \curvearrowright V$ by permuting coordinates of \mathbb{R}^3 .

Weyl Polytopes and Quotient Polytopes

The **fundamental chamber** is

$$C := \{x \in V | \langle x, \alpha_k \rangle > 0, \forall k \in [n]\}.$$

Theorem (Humphreys'92, Theorem 1.12)

 \overline{C} is a fundamental domain for the action of W on V, i.e., each $x \in V$ lies in W(x') for some unique $x' \in \overline{C}$.

Weyl Polytopes and Quotient Polytopes

The **fundamental chamber** is

$$C := \{x \in V | \langle x, \alpha_k \rangle > 0, \forall k \in [n]\}.$$

Theorem (Humphreys'92, Theorem 1.12)

 \overline{C} is a fundamental domain for the action of W on V, i.e., each $x \in V$ lies in W(x') for some unique $x' \in \overline{C}$.

Fix a point $a \in C$, define the **Weyl polytope** P := Conv(W(a)). The quotient $P/W \cong P \cap \overline{C}$ is a polytope.

Example (of Lie type A_2)

$$V = (1, 1, 1)^{\perp} \subset \mathbb{R}^3$$
, $\alpha_1 = (1, -1, 0)$, $\alpha_2 = (0, 1, -1)$.

Face Structures

Let $F_i := Conv(W_{[n]\setminus\{i\}}(a)), H_i := (\alpha_i)^{\perp}$ for $i \in [n]$.

Lemma (faces of P)

Define $\Lambda := \bigcup_{I \subset [n]} \{I\} \times \frac{W}{W_{[n] \setminus I}}$, then there is a bijection between Λ and the set of all faces of P, assigning (I, s) to $s(\cap_{i \in I} F_i)$.

Lemma (faces of P/W)

Define $H_IF_J := (\cap_{i \in I} H_i) \cap (\cap_{j \in J} F_j)$, then $H_IF_J \cap \overline{C}$ gives out bijectively all faces of $P \cap \overline{C}$ as I, J range among disjoint subsets of [n].

[Vinberg'91] studied the face structure of P, [Burrull-Gui-hu'24] studied that of P/W, and [Horiguchi-Masuda-Shareshian-Song'21] studied that of P/W_K for Lie types A,B,C,D.

Table of Contents

- Main Result
- 2 Toric Varieties from Polytopes
- 3 Root Systems and Weyl Polytopes
- 4 The Homotopy Equivalence

Lattice Settings

Let M be the lattice of roots $\mathbb{Z}Span\left(\left\{\alpha_i\right\}_{i\in[n]}\right)$, N be the lattice of coweights $\mathbb{Z}Span\left(\left\{\omega_i^\vee\right\}_{i\in[n]}\right)$.

Choose $a \in C \cap M$, we consider P = Conv(W(a)) in $M_{\mathbb{R}} = V$, and its normal vectors in $N_{\mathbb{R}} = V$.

We write σ for a cone of Σ_P , and $\sigma_{[n]}$ for a cone of $\Sigma_{P/W}$. For a point p in P (resp. $P \cap \overline{C}$), the cone σ_p (resp. $\sigma_{[n],p}$) corresponds to the face of P (resp. $P \cap \overline{C}$) whose relative interior contains p.

The Equivalent Description

Lemma

Identify X_P with $\bigcup_{p\in P} \frac{S_N}{S_{N(\sigma_p)}} \times \{p\}$, then X_P/W is homeomorphic to

$$\frac{S_N \times (P \cap \overline{C})}{\sim_{ed}}$$

where $(t_1, p_1) \sim_{ed} (t_2, p_2)$ iff $p_1 = p_2$ lying in the minimal face $H_I F_J \cap \overline{C}$ of $P \cap \overline{C}$, and t_1 , t_2 represent the same element of $\frac{S_N}{S_{N(\sigma_{D_1})}}/W_I$.

Example (of Lie type A_2)

$$X_{P} = \bigcup_{p \in P} \frac{S_{N}}{S_{N(\sigma_{p})}} \times \{p\}$$

$$H_{2}$$

$$p_{1}$$

$$p_{2}$$

$$P$$

$$S_{N}$$

The Map Φ

The following diagram is commutative:

The Map Φ

The following diagram is commutative:

Theorem (Smale'57)

Suppose X, Y are (homeomorphic to) compact simplicial complexes, $f: X \to Y$ is onto. For each $y \in Y$, $f^{-1}(y)$ is locally k-connected and k-connected.

Then the induced homomorphism $f_*: \pi_r(X) \to \pi_r(Y)$ is an isomorphism for $0 \le r \le k$, onto for r = k + 1.

Example (of Lie type A_2)

$$X_{P}/W = \frac{S_{N} \times \left(P \cap \overline{C}\right)}{\sum_{ed}} \qquad X_{P/W} = \frac{S_{N} \times \left(P \cap \overline{C}\right)}{\sum_{ed}}$$

$$q_{1} \longrightarrow \qquad \qquad q_{2} \longrightarrow \qquad q_{1} \longrightarrow \qquad q_{2} \longrightarrow \qquad q_{1} \longrightarrow \qquad q_{2} \longrightarrow \qquad q_{1} \longrightarrow \qquad q_{2} \longrightarrow \qquad q_{3} \longrightarrow \qquad q_{4} \longrightarrow \qquad q_{4$$

$$\Phi^{-1}\left([t,q_1]\right) = S_N/W \cong rac{\Delta^2}{\mathbb{Z}/3} \cong D^2.$$
 $\Phi^{-1}\left([e,q_2]\right) = S(lpha_1)/W_{\{1\}} = rac{S^1}{\mathbb{Z}/2} \cong D^1.$

Fibers of Φ

Lemma

Suppose that [t,p] is a point of $X_{P/W}$, and p lies in the relative interior of some face $H_IF_J \cap \overline{C}$. Then the fiber of Φ is (locally) contractible:

$$\Phi^{-1}([t,p]) \cong \frac{S_{N(\sigma_{[n],p})}}{S_{N(\sigma_p)}} / W_I \cong \frac{Span(\{\alpha_i\}_{i \in I})}{\mathcal{SP}_{I,J}^{\vee}} / W_I,$$

where
$$\mathcal{SP}_{I,J}^{\vee} := Span\left(\{\alpha_i\}_{i \in I}\right) \cap \left(N + Span\left(\{\omega_j^{\vee}\}_{j \in J}\right)\right)$$
.

Proof Sketch (of case I = [n]).

$$\Phi^{-1}([t,p]) = S_N/W \cong \frac{\overline{A}}{N/Q^{\vee}} = \frac{polytope}{finite affine transformations}.$$

Generalization

For $K \subset [n]$, $W_K \curvearrowright P$, and P/W_K is a polytope contained in V.

Theorem

There is a homotopy equivalence $\Phi_K: X_P/W_K \to X_{P/W_K}$.

Question ([Horiguchi-Masuda-Shareshian-Song'21])

Is there an **isomorphism** between X_P/W_K and X_{P/W_K} ?

Thank You!