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Main Result

A Weyl group W acts linearly on a real Euclidean space V.
P is the convex hull of the W-orbit of a well-chosen point of V.
P and P/ W are (identified with) polytopes lying in V.

There are associated toric varieties Xp and Xp/\y.
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Main Result

A Weyl group W acts linearly on a real Euclidean space V.
P is the convex hull of the W-orbit of a well-chosen point of V.
P and P/ W are (identified with) polytopes lying in V.

There are associated toric varieties Xp and Xp/\y.

There is a homotopy equivalence ® : Xp/W — Xp/w for any Lie type. \

By [Blume'15], Xp/ W = Xp,y as varieties for Lie types A, B, C.

By [Horiguchi-Masuda-Shareshian-Song'21], for Lie types A, B, C, D,
H*(Xp/Wk; Q) = H*(Xp/w,; Q) for any parabolic subgroup Wk.
[Song'22] generalized the isomorphism to symmetric polygons.
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Example (of Lie type A;)
InR, W= (s: x— —x), P=[-1,1], and P/W = [0, 1].

Xp/W Xp/w
WD
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Toric Varieties from Polytopes

Given a lattice M of rank n, its dual lattice N and an n-dimensional lattice
polytope P C Mg := M®z R, each facet F of P has a normal vector /¢ in
Nr := N®z R, which is integral, primitive and pointing inside the
polytope.
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Toric Varieties from Polytopes

Given a lattice M of rank n, its dual lattice N and an n-dimensional lattice
polytope P C Mg := M®z R, each facet F of P has a normal vector /¢ in
Nr := N®z R, which is integral, primitive and pointing inside the
polytope.

Define the normal fan X p whose cones are generated by those sets of
normal vectors /,:,.17 /,:,.27 e v/ka whose corresponding facets Fj, Fj,,--- , F;
have non-empty intersection in P.

k

Each cone o in ¥ p corresponds to an affine complex toric variety X, and
these affine varieties fit together to form an algebraic variety Xp.
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Topological Models

Sy = Ng/N= N®z S There is an Sy-equivariant homeomorphism
Xp = (Snx P)/ ~,

where (t1, p1) ~ (t2, p2) iff p1 = p2 lying in the relative interior of some
face F, and ty, t» are congruent modulo the subtorus SN(Upl) of Sy for the
cone 0, € XLp corresponding to the face F.

8/24



Topological Models

Sy = Ng/N= N®z S There is an Sy-equivariant homeomorphism
Xp = (Snx P)/ ~,

where (t1, p1) ~ (t2, p2) iff p1 = p2 lying in the relative interior of some
face F, and ty, t» are congruent modulo the subtorus 5N(cr,,1) of Sy for the
cone 0, € XLp corresponding to the face F.

Example
InR, P=[-1,1].
St x [-1,1] Xp >~ $?
O~—1
D ——
O~

>yt
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Group Action

If G~ Nwith G~ PC Mg, then G~ £p and G~ Xp.

For any g € G, the following diagram is commutative:

XPL(SNXP)/N

{ Jeve

XPT)(SNXP)/N.
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In an n-dimensional real Euclidean space (V, (-, -)), a finite set R of
non-zero vectors (roots), is a root system if

e RNRa ={a,—a}, Va € R,
e s,(B):=p— ’BaaERVaﬂeR

2(B,e)
° T €.
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non-zero vectors (roots), is a root system if

e RNRa ={a,—a}, Va € R,
e s,(B):=p— ’BaaERVaﬂeR;

(a,)

2(B,e)
° T €.

There is a simple system A C R such that each root of R can be written
as a unique Z-linear combination of simple roots.
Implicitly R is of rank n, that is, A = {a1,a,...,Qu}.

Weyl group W := (s;:= s,,| i € [n]) where [n] :={1,2,...,n}.

A subset | C [n] determines a parabolic subgroup W, := (s;|i € /).
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Example (of Lie type Ay)

V= {(Xl’XZ,X3) eR3: X1+ X0+ x3 = 0}_
a1 = (1,-1,0), a2 = (0,1, -1).
W= S3 ~ V by permuting coordinates of R3.

R = {£a1, tas, £(a1 + a2)}.

sp(a1) = a1 — %az = + .
W ~ ZSpan(R) .
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Weyl Polytopes and Quotient Polytopes

The fundamental chamber is

C:={xe V] (x,ax) > 0, Vk € [n]}.

Theorem (Humphreys'92, Theorem 1.12)

C is a fundamental domain for_the action of Won V, i.e., each x € V lies
in W(X) for some unique X € C.
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Weyl Polytopes and Quotient Polytopes

The fundamental chamber is

C:={xe V] (x,ax) > 0, Vk € [n]}.

Theorem (Humphreys'92, Theorem 1.12)

C is a fundamental domain for_the action of Won V, i.e., each x € V lies
in W(X) for some unique X € C.

Fix a point a € C, define the Weyl polytope P := Conv(W(a)).
The quotient P/W= PN Cis a polytope.
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Example (of Lie type A,)
V=(1,1,1)" c R? oy = (1,—1,0), ap = (0,1, —-1).

Ho
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Face Structures

Let Fj:= Conv (W 1 (a)), Hi:= (o)™ for i€ [n].

Lemma (faces of P)

Define N := |J {I} x % then there is a bijection between N\ and the
IC[n] H
set of all faces of P, assigning (1,s) to s(Nic/Fi).

A\

Lemma (faces of P/W)

Define HF; := (Nic/Hi) N (ﬂjEJFj), then H,F ;N C gives out bijectively all
faces of PN C as I, J range among disjoint subsets of [n].

[Vinberg'91] studied the face structure of P, [Burrull-Gui-hu'24] studied
that of P/W, and [Horiguchi-Masuda-Shareshian-Song'21] studied that of
P/ Wy for Lie types A, B, C, D.
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Lattice Settings

Let M be the lattice of roots ZSpan ({a,-},-e[n]>, N be the lattice of
coweights ZSpan ({w,v}ie[n])

Choose a € CN M, we consider P = Conv(W(a)) in Mg = V, and its
normal vectors in N = V.

We write o for a cone of X p, and o[, for a cone of X p,y. For a point p in
P (resp. PN C), the cone oy, (resp. oy, ) corresponds to the face of P
(resp. PN C) whose relative interior contains p.
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The Equivalent Description

Identify Xp with U x {p}, then Xp/W is homeomorphic to

Sy % (P N E)
~ed
where (t1, p1) ~ed (t2, p2) iff p1 = p2 lying in the m/nima/ face HiF;N C of

PN C, and ty, t represent the same element of / W.
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Example (of Lie type A,)

XP/ W= SNX,\(J:ﬂC)
D2

Pie

SNW sy Why
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The Map ¢

The following diagram is commutative:

Syx (PNO) . smx(NPmc) ~ Xp)

3
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The Map ¢

The following diagram is commutative:

5[\/ X (Pﬂ E) » e = XP/W

Theorem (Smale'57)

Suppose X, Y are (homeomorphic to) compact simplicial complexes,

f: X — Yis onto. For each yc Y, f1(y) is locally k-connected and
k-connected.

Then the induced homomorphism f, : w.(X) — m(Y) is an isomorphism for
0<r<k, ontoforr=k+1.
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Example (of Lie type Ay)

Xp/ W = SNXSZHE) Xp/w = s,\,x(NPmE)
¢ AN
[t q] — [t 4]
q1 ¢
Sn/ Wy
S,Q/W bt

&1 ([t, q1]) = Sn/ W = A% D?.
’ 7./3
S o L

®~* ([e, q2]) = S(a1)/Wpy = Zn =

—_ = — SR
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Fibers of ¢

Suppose that [t, p] is a point of Xp,y, and p lies in the relative interior of
some face HiF ;N C. Then the fiber of & is (locally) contractible:

(D_l([t, ] o N("[n]p)/W o Span({al}lel)/w

where SPY ;:= Span ({i}ier) N (N-I— Span ({w}/}je_/)>.

Proof Sketch (of case /= [n]).

_ A polytope
& Y([t, p]) = Sy/ W = :
([t. p]) = Sn/ N/QV  finite affine transformations
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Generalization

For K C [n], Wk ~ P, and P/W(k is a polytope contained in V.

There is a homotopy equivalence ®x : Xp/ Wk — Xpw- \

Question ([Horiguchi-Masuda-Shareshian-Song'21])

Is there an isomorphism between Xp/ Wy and Xp/wi?
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Thank You!
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