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Hirzebruch genera

Ω∗
U is the complex cobordism ring = cobordism ring of (closed) stably

complex manifolds

stably complex structure on M = complex structure on TM ⊕ RN

(up to ⊕Ck)

stably complex manifolds M and N are cobordant if M ⊔ N = ∂W

Ω∗
U = {stably complex closed manifolds}/ ∼

[M] + [N] = [M ⊔ N] [M] · [N] = [M × N]
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Hirzebruch genera

R is a graded commutative Q-algebra

Ω∗
U is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism φ : Ω∗
U → R

complex genera φ : Ω∗
U → R are in the bijection with the power series

f ∈ R[[x ]] s. t. f (x) = x + . . . (Hirzebruch)

f (x) = g−1(x), g(x) = x +
∑

k⩾1
φ([CPk ])

k+1 xk+1 (Mischenko)

φ([M]) = ⟨
∏ xi

f (xi )
(T M), [M]Z⟩
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Equivariant extension

Ω∗
U:T k is the complex T k -equivariant cobordism ring

Φ: Ω∗
U:T k

P–T−−→ MU∗
T k (pt) → MU∗(BT k) = Ω∗

U [[u1, . . . , uk ]]

Φ is the universal (complex) toric genus. It is injective (Comezaña, Hanke,
Löffler).

The equivariant extension of a genus φ : Ω∗
U → R is a composition

φT : Ω∗
U:T k

Φ−→ Ω∗
U [[u1, . . . , uk ]]

φ : Ω∗
U→R

ui 7→f (xi )−−−−−−→ R[[x1, . . . , xk ]]
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Rigidity

A genus φ : Ω∗
U → R is rigid on a T k -manifold M if

φT ([M]) = const ∈ R[[x1, . . . , xk ]].

In fact this constant is φ([M]) ∈ R.

Theorem (Buchstaber–Panov–Ray)

A genus φ : Ω∗
U → R is rigid on M if and only if we have

φ(E ) = φ(M)φ(B) for any fibre bundle E → B with fibre M.

Theorem (Buchstaber–Panov–Ray localization formula)

If a T k -manifold M has only isolated fixed points, then

φT (M) =
∑

p∈MT

σ(p)
n∏

i=1

1

f (⟨wi (p), x⟩)
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Examples

χa,b : Ω
∗
U → Q[a, b], f (x) = eax−ebx

aebx−beax

, universal T k -rigid genus

(Musin), universal CP2-rigid taking nonzero value on CP2

(Buchstaber–Bunkova)

(Oriented) elliptic genus φell : Ω
∗
U → Q[ε, δ], f (x) = sn(x)

(sn′(x))2 = 1− 2δ(sn(x))2 + ε(sn(x))4

ε = δ2: sn(x) = th(x)
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χa,b : Ω
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U → Q[a, b], f (x) = eax−ebx

aebx−beax
, universal T k -rigid genus

(Musin), universal CP2-rigid taking nonzero value on CP2

(Buchstaber–Bunkova)

(Oriented) elliptic genus φell : Ω
∗
U → Ω∗

SO → Q[ε, δ], f (x) = sn(x)

(sn′(x))2 = 1− 2δ(sn(x))2 + ε(sn(x))4

ε = δ2: sn(x) = th(x)

the elliptic genus is the universal HP2-rigid genus (Kreck–Stolz)
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Krichever genus

φKr : Ω
∗
U → Q[α, b1, b2, b3]

fKr (x) =
eαx

Φ(x , z)
∈ Q[α, b1, b2, b3][[x ]]

℘(x) =
1

x2
+

1

20
g2x

2 +
1

28
g3x

4 + . . .

(℘′(x))2 = 4(℘(x))3 − g2℘(x)− g3

℘(x) = −(lnσ(x))′′ ζ(x) = (lnσ(x))′ σ(x) ∈ Q[g2, g3][[x ]]

Φ(x , z) =
σ(z − x)

σ(z)σ(x)
eζ(z)x

1

Φ(x , z)
∈ Q[b1, b2, b3][[x ]], b1 = ℘(z), b2 = ℘′(z), b3 = g2
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Krichever genus

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on CP2, then it is a Krichever genus
(Buchstaber–Bunkova).

Theorem (Buchstaber–Panov–Ray)

The Krichever genus vanishes on any quasitoric SU-manifold.
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SU-rigidity

Ω∗
SU ⊗ Z[1/2] = Z[1/2][y2, y3, . . .]

Ω4
SU = Z⟨y2⟩, Ω6

SU = Z⟨y3⟩, Ω8
SU = Z⟨1

4
y22 , y4⟩,

Ω10
SU = Z⟨1

2
y2y3, y5⟩ ⊕ Z/2

y3 = [S6 = G2/SU(3)] T 2 ↷ S6

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on S6.
1) If φ([S6]) ̸= 0, then φ is a Krichever genus with b2 ̸= 0;
2) If φ([S6]) = 0, then f (x) = eβx f̃ (x) for an odd series f̃ (x).

If b2 = 0, then fKr = eαxsn(x).
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SU-rigidity

Theorem (Lü–Panov)

Classes yi with i ⩾ 5 can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU-manifolds L̃(2k1, 2k2 + 1) and
Ñ(2k1, 2k2 + 1).

L̃(2k1, 2k2 + 1) is over ∆2k1 ×∆2k2+1, projectivisation of a sum of line
bundles over CP2k1 with a “twisted” stably complex structure

Ñ(2k1, 2k2 + 1) is over ∆1 ×∆2k1 ×∆2k2+1, projectivisation of a sum of
line bundles over CP1 × CP2k1 with a “twisted” stably complex structure

In particular, y5 = [L̃(2, 3)].
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SU-rigidity

Theorem

Let φ be a genus which is rigid on S6 and on L̃(2, 3). If φ([S6]) = 0, then
f (x) = eαxsn(x).

Corollary

The Krichever genus is the universal genus which is rigid on S6 and
L̃(2, 3). In particular, it is the universal SU-rigid genus.
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Witten genus

φW : Ω∗
SO → Q[α, g2, g3]

fW (x) = eαx
2
σ(x)

Witten genus is rigid on OP2 = F4/Spin(9) and φW ([OP2]) = 0.

Theorem

The Witten genus is the universal genus which is rigid and vanishes on
OP2.

The rigidity equation for OP2 is equivalent to

0 = f (y1 + y2)f (y1 − y2)f (y3 + y4)f (y3 − y4)+

+ f (y2 − y3)f (y2 + y3)f (y1 − y4)f (y1 + y4)+

+ f (y2 − y4)f (y2 + y4)f (y3 − y1)f (y1 + y3)
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Thank you for your attention!
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