On the rigidity of some Hirzebruch genera

(based on arXiv:2402.10049)

Georgii Chernykh

Higher School of Economics Steklov Mathematical Institute

Focus Program on Toric Topology, Geometry and Polyhedral Products Workshop on Toric Topology

> Fields Institute August 23, 2024

> > 1 / 14

[Fo](#page-2-0)[cu](#page-0-0)[s](#page-1-0) [Pr](#page-9-0)[o](#page-10-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

 $2/14$

 $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring

 $2/14$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$ $(\mathsf{up}~\mathsf{to}~\oplus\mathbb{C}^k)$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$ $(\mathsf{up}~\mathsf{to}~\oplus\mathbb{C}^k)$

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$ $(\mathsf{up}~\mathsf{to}~\oplus\mathbb{C}^k)$

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

 $\varOmega_{\boldsymbol{U}}^*=\{\text{stably complex closed manifolds}\}/\sim$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$ $(\mathsf{up}~\mathsf{to}~\oplus\mathbb{C}^k)$

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

$$
\varOmega^\ast_U=\{\hbox{stably complex closed manifolds}\}/\sim
$$

$$
[M]+[N]=[M\sqcup N]
$$

stably complex structure on $M=$ complex structure on $\mathcal{TM} \oplus \mathbb{R}^N$ $(\mathsf{up}\;\mathsf{to}\oplus\mathbb{C}^k)$

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

$$
\varOmega^\ast_U=\{\text{stably complex closed manifolds}\}/\sim
$$

$$
[M] + [N] = [M \sqcup N] \quad [M] \cdot [N] = [M \times N]
$$

[Fo](#page-11-0)[cu](#page-9-0)[s](#page-10-0) [Pr](#page-16-0)[o](#page-17-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

 $3/14$

R is a graded commutative **Q**-algebra

R is a graded commutative **Q**-algebra $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring

R is a graded commutative **Q**-algebra

 $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega^*_U\to R$

R is a graded commutative **Q**-algebra

 $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega^*_U\to R$

complex genera $\varphi\colon \varOmega^*_U\to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + ...$ (Hirzebruch)

R is a graded commutative **Q**-algebra $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega^*_U\to R$ complex genera $\varphi\colon \varOmega^*_U\to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + ...$ (Hirzebruch) $f(x)=g^{-1}(x)$, $g(x)=x+\sum_{k\geqslant 1}\frac{\varphi([\mathbb{C}P^k])}{k+1}x^{k+1}$ (Mischenko)

R is a graded commutative **Q**-algebra $\varOmega_{\boldsymbol{U}}^*$ is the complex cobordism ring complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega^*_U\to R$ complex genera $\varphi\colon \varOmega^*_U\to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + ...$ (Hirzebruch) $f(x)=g^{-1}(x)$, $g(x)=x+\sum_{k\geqslant 1}\frac{\varphi([\mathbb{C}P^k])}{k+1}x^{k+1}$ (Mischenko) $\varphi([M]) = \langle \prod \frac{x_i}{f(x_i)}(\mathcal{T}M), [M]_{\mathbb{Z}}\rangle$

Equivariant extension

4 / 14

$$
\Phi\colon \Omega^*_{U:\mathcal{T}^k}\xrightarrow{P-T} MU^*_{\mathcal{T}^k}(pt)
$$

$$
\Phi\colon \Omega^*_{U:\mathcal{T}^k}\xrightarrow{P-T} MU^*_{\mathcal{T}^k}(pt)\to MU^*(BT^k)
$$

4 / 14

$$
\Phi\colon \Omega^*_{U:\mathcal T^k}\xrightarrow{P-T} MU^*_{\mathcal T^k}(pt)\to MU^*(BT^k)=\Omega^*_U[[u_1,\ldots,u_k]]
$$

4 / 14

$$
\Phi\colon \Omega^*_{U:\mathcal{T}^k}\xrightarrow{P-T} MU^*_{\mathcal{T}^k}(pt)\to MU^*(BT^k)=\Omega^*_U[[u_1,\ldots,u_k]]
$$

Φ is the universal (complex) toric genus.

$$
\Phi\colon \Omega^*_{U:\mathcal T^k}\xrightarrow{P-\mathsf T} MU^*_{\mathcal T^k}(\mathit{pt})\to MU^*(B\mathcal T^k)=\Omega^*_U[[u_1,\ldots,u_k]]
$$

Φ is the universal (complex) toric genus. It is injective (Comeza˜na, Hanke, Löffler).

$$
\Phi\colon \Omega^*_{U:\mathcal T^k}\xrightarrow{P-\mathsf T} MU^*_{\mathcal T^k}(\mathit{pt})\to MU^*(B\mathcal T^k)=\Omega^*_U[[u_1,\ldots,u_k]]
$$

Φ is the universal (complex) toric genus. It is injective (Comeza˜na, Hanke, Löffler).

The equivariant extension of a genus $\varphi\colon \varOmega^*_U\to R$ is a composition

$$
\varphi^{\mathcal{T}}\colon \Omega^*_{U:\mathcal{T}^k}\xrightarrow{\Phi}\Omega^*_{U}[[u_1,\ldots,u_k]]\xrightarrow{u_i\mapsto f(x_i)}R[[x_1,\ldots,x_k]]
$$

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on a \mathcal{T}^k -manifold M if $\varphi^{\mathcal{T}}([M]) = \mathit{const} \in R[[x_1, \ldots, x_k]].$

Rigidity

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on a \mathcal{T}^k -manifold M if $\varphi^{\, \mathcal{T}}([M]) = \mathit{const} \in R[[x_1, \ldots, x_k]].$ In fact this constant is $\varphi([M]) \in R.$

5 / 14

Rigidity

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on a \mathcal{T}^k -manifold M if $\varphi^{\, \mathcal{T}}([M]) = \mathit{const} \in R[[x_1, \ldots, x_k]].$ In fact this constant is $\varphi([M]) \in R.$

Theorem (Buchstaber–Panov–Ray)

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on M if and only if we have $\varphi(E) = \varphi(M)\varphi(B)$ for any fibre bundle $E \to B$ with fibre M.

Rigidity

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on a \mathcal{T}^k -manifold M if $\varphi^{\, \mathcal{T}}([M]) = \mathit{const} \in R[[x_1, \ldots, x_k]].$ In fact this constant is $\varphi([M]) \in R.$

Theorem (Buchstaber–Panov–Ray)

A genus $\varphi\colon \varOmega^*_U\to R$ is rigid on M if and only if we have $\varphi(E) = \varphi(M)\varphi(B)$ for any fibre bundle $E \to B$ with fibre M.

Theorem (Buchstaber–Panov–Ray localization formula)

If a T^k -manifold M has only isolated fixed points, then

$$
\varphi^{\mathcal{T}}(M) = \sum_{p \in M^{\mathcal{T}}} \sigma(p) \prod_{i=1}^{n} \frac{1}{f(\langle w_i(p), \mathbf{x} \rangle)}
$$

$$
\bullet \ \ \chi_{a,b} \colon \Omega^*_{U} \to \mathbb{Q}[a,b], \ f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}
$$

[Fo](#page-30-0)[cu](#page-28-0)[s](#page-29-0) [Pr](#page-35-0)[o](#page-36-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

 $6/14$

 $\chi_{\bm{a},\bm{b}}\colon \varOmega^*_{\bm{U}}\to \mathbb{Q}[\bm{a},\bm{b}],\ f(\bm{x})=\frac{e^{\bm{a}\bm{x}}-e^{\bm{b}\bm{x}}}{ae^{\bm{b}\bm{x}}-be^{\bm{a}\bm{x}}},$ universal \mathcal{T}^k -rigid genus (Musin)

6 / 14

 $\chi_{a,b}\colon \Omega^*_U\to \mathbb{Q}[a,b],\ f\big(x)=\frac{e^{ax}-e^{bx}}{ae^{bx}-be^{ax}},$ universal \mathcal{T}^k -rigid genus (Musin), universal C P^2 -rigid taking nonzero value on C P^2 (Buchstaber–Bunkova)

6 / 14

 $\chi_{a,b}\colon \Omega^*_U\to \mathbb{Q}[a,b],\ f\big(x)=\frac{e^{ax}-e^{bx}}{ae^{bx}-be^{ax}},$ universal \mathcal{T}^k -rigid genus (Musin), universal C P^2 -rigid taking nonzero value on C P^2 (Buchstaber–Bunkova)

6 / 14

[Fo](#page-33-0)[cu](#page-28-0)[s](#page-29-0) [Pr](#page-35-0)[o](#page-36-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

 $(\mathsf{Oriented})$ elliptic genus $\varphi_{\textit{ell}} \colon \varOmega^*_{\textit{U}} \to \mathbb{Q}[\varepsilon, \delta]$

 $\chi_{a,b}\colon \Omega^*_U\to \mathbb{Q}[a,b],\ f\big(x)=\frac{e^{ax}-e^{bx}}{ae^{bx}-be^{ax}},$ universal \mathcal{T}^k -rigid genus (Musin), universal C P^2 -rigid taking nonzero value on C P^2 (Buchstaber–Bunkova)

6 / 14

[Fo](#page-34-0)[cu](#page-28-0)[s](#page-29-0) [Pr](#page-35-0)[o](#page-36-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

(Oriented) elliptic genus φ_{ell} : $\Omega^*_{U} \to \mathbb{Q}[\varepsilon, \delta]$, $f(x) = \text{sn}(x)$

- $\chi_{a,b}\colon \Omega^*_U\to \mathbb{Q}[a,b],\ f\big(x)=\frac{e^{ax}-e^{bx}}{ae^{bx}-be^{ax}},$ universal \mathcal{T}^k -rigid genus (Musin), universal C P^2 -rigid taking nonzero value on C P^2 (Buchstaber–Bunkova)
- (Oriented) elliptic genus φ_{ell} : $\Omega^*_{U} \to \mathbb{Q}[\varepsilon, \delta]$, $f(x) = \text{sn}(x)$

$$
(\mathrm{sn}'(x))^2 = 1 - 2\delta(\mathrm{sn}(x))^2 + \varepsilon(\mathrm{sn}(x))^4
$$

- $\chi_{a,b}\colon \Omega^*_U\to \mathbb{Q}[a,b],\ f\big(x)=\frac{e^{ax}-e^{bx}}{ae^{bx}-be^{ax}},$ universal \mathcal{T}^k -rigid genus (Musin), universal C P^2 -rigid taking nonzero value on C P^2 (Buchstaber–Bunkova)
- (Oriented) elliptic genus φ_{ell} : $\Omega^*_{U} \to \mathbb{Q}[\varepsilon, \delta]$, $f(x) = \text{sn}(x)$

$$
(\mathrm{sn}'(x))^2 = 1 - 2\delta(\mathrm{sn}(x))^2 + \varepsilon(\mathrm{sn}(x))^4
$$

$$
\varepsilon = \delta^2 \colon \operatorname{sn}(x) = \operatorname{th}(x)
$$

- $\chi_{\sf a, b}\colon \varOmega^*_U\to {\mathbb Q}[\sf a, b]$, $f\bigl(x)=\frac{e^{\sf a}x-e^{\sf b}x}{ae^{\sf b}x-be^{\sf a}x}$, universal \mathcal{T}^k -rigid genus (Musin), universal C \mathcal{P}^2 -rigid taking nonzero value on C \mathcal{P}^2 (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} : \Omega^*_{U} \to \Omega^*_{SO} \to \mathbb{Q}[\varepsilon, \delta], \ f(x) = \text{sn}(x)$

$$
(\mathrm{sn}'(x))^2 = 1 - 2\delta(\mathrm{sn}(x))^2 + \varepsilon(\mathrm{sn}(x))^4
$$

$$
\varepsilon = \delta^2 \colon \operatorname{sn}(x) = \operatorname{th}(x)
$$

the elliptic genus is the universal $\mathbb{H}P^2$ -rigid genus (Kreck–Stolz)

[Fo](#page-38-0)[cu](#page-36-0)[s](#page-37-0) [Pr](#page-43-0)[o](#page-44-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

8 / 14

 $\varphi_{Kr}\colon \Omega^*_U\to \mathbb{Q}[\alpha,b_1,b_2,b_3]$

Krichever genus

$$
\varphi_{Kr} \colon \Omega_U^* \to \mathbb{Q}[\alpha, b_1, b_2, b_3]
$$

$$
f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]
$$

$$
\varphi_{\text{Kr}}\colon \varOmega^*_{\text{U}}\to \mathbb{Q}[\alpha,b_1,b_2,b_3]
$$

$$
f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]
$$

$$
\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots
$$

$$
(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3
$$

$$
\varphi_{\text{Kr}}\colon \varOmega^\ast_U\to \mathbb{Q}[\alpha,b_1,b_2,b_3]
$$

$$
f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]
$$

$$
\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots
$$

$$
(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3
$$

 $\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]$

$$
\varphi_{\text{Kr}}\colon \varOmega^\ast_U\to \mathbb{Q}[\alpha,b_1,b_2,b_3]
$$

$$
f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]
$$

$$
\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots
$$

$$
(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3
$$

$$
\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]
$$

$$
\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)\sigma(x)}e^{\zeta(z)x}
$$

$$
\varphi_{\text{Kr}}\colon \varOmega^\ast_U\to \mathbb{Q}[\alpha,b_1,b_2,b_3]
$$

$$
f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]
$$

$$
\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots
$$

$$
(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3
$$

$$
\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]
$$

$$
\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)\sigma(x)}e^{\zeta(z)x}
$$

$$
\frac{1}{\Phi(x, z)} \in \mathbb{Q}[b_1, b_2, b_3][[x]], \ b_1 = \wp(z), b_2 = \wp'(z), b_3 = g_2
$$

 $8/14$

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on $\mathbb{C}P^2$, then it is a Krichever genus (Buchstaber–Bunkova).

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on $\mathbb{C}P^2$, then it is a Krichever genus (Buchstaber–Bunkova).

Theorem (Buchstaber–Panov–Ray)

The Krichever genus vanishes on any quasitoric SU-manifold.

$$
\varOmega_{\text{SU}}^*\otimes\mathbb{Z}[1/2]=\mathbb{Z}[1/2][y_2,y_3,\ldots]
$$

$$
\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]
$$

$$
\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \quad \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \quad \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,
$$

$$
\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2
$$

[Fo](#page-50-0)[cu](#page-46-0)[s](#page-47-0) [Pr](#page-53-0)[o](#page-54-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

 $10/14$

$$
\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]
$$

$$
\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \quad \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \quad \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,
$$

$$
\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2
$$

$$
y_3 = [S^6 = G_2/SU(3)]
$$

 $10/14$

$$
\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]
$$

$$
\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \ \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \ \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,
$$

$$
\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2
$$

$$
y_6 = [S^6 - G_6 / SU(3)] \quad T^2 \otimes S^6
$$

$$
y_3 = [S^6 = G_2/SU(3)] \quad T^2 \sim S^6
$$

 $10/14$

$$
\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]
$$

$$
\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \quad \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \quad \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,
$$

$$
\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2
$$

$$
y_3 = [S^6 = G_2/SU(3)] \qquad T^2 \curvearrowright S^6
$$

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on \mathcal{S}^6 . 1) If $\varphi([S^6]) \neq 0$, then φ is a Krichever genus with $b_2 \neq 0$; 2) If $\varphi([S^6]) = 0$, then $f(x) = e^{\beta x} \tilde{f}(x)$ for an odd series $\tilde{f}(x)$.

$$
\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]
$$

$$
\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \quad \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \quad \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,
$$

$$
\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2
$$

$$
y_3 = [S^6 = G_2/SU(3)] \qquad T^2 \curvearrowright S^6
$$

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on \mathcal{S}^6 . 1) If $\varphi([S^6]) \neq 0$, then φ is a Krichever genus with $b_2 \neq 0$; 2) If $\varphi([S^6]) = 0$, then $f(x) = e^{\beta x} \tilde{f}(x)$ for an odd series $\tilde{f}(x)$.

If
$$
b_2 = 0
$$
, then $f_{Kr} = e^{\alpha x} \operatorname{sn}(x)$.

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $\mathcal{L}(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $L(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $L(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $L(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2+1}$

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{1}\times \mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure

Classes y_i with $i \geqslant 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric SU -manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $N(2k_1, 2k_2 + 1).$

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2 + 1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{1}\times \mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure In particular, $v_5 = [L(2, 3)]$.

Theorem

Let φ be a genus which is rigid on S^6 and on $\tilde{L}(2,3)$. If $\varphi([S^6]) = 0$, then $f(x) = e^{\alpha x} \text{sn}(x)$.

Theorem

Let φ be a genus which is rigid on S^6 and on $\tilde{L}(2,3)$. If $\varphi([S^6]) = 0$, then $f(x) = e^{\alpha x} \text{sn}(x)$.

12 / 14

[Fo](#page-63-0)[cu](#page-60-0)[s](#page-61-0) [Pr](#page-62-0)[o](#page-63-0)[gram](#page-0-0) [on](#page-69-0) [Tor](#page-0-0)[ic T](#page-69-0)[opol](#page-0-0)[ogy,](#page-69-0) Geometry and Polyhedral Products Workshop on Toric Topology Fields Institute August 23, 2024

Corollary

The Krichever genus is the universal genus which is rigid on S^6 and $\widetilde{L}(2,3)$. In particular, it is the universal SU-rigid genus.

 $\varphi_W\colon \Omega_{\mathcal{SO}}^*\to \mathbb{Q}[\alpha,g_2,g_3]$

13 / 14

$$
\varphi_W\colon \varOmega^*_{\mathit{SO}}\rightarrow \mathbb{Q}[\alpha,g_2,g_3]
$$

$$
f_W(x) = e^{\alpha x^2} \sigma(x)
$$

$$
\varphi_W\colon \varOmega^*_{\mathit{SO}}\rightarrow \mathbb{Q}[\alpha,g_2,g_3]
$$

$$
f_W(x) = e^{\alpha x^2} \sigma(x)
$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0.$

$$
\varphi_W\colon \varOmega^*_{\mathit{SO}}\rightarrow \mathbb{Q}[\alpha,g_2,g_3]
$$

$$
f_W(x)=e^{\alpha x^2}\sigma(x)
$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0.$

Theorem

The Witten genus is the universal genus which is rigid and vanishes on $\mathbb{O}P^2$.

$$
\varphi_W\colon \varOmega^*_{\mathit{SO}}\rightarrow \mathbb{Q}[\alpha,g_2,g_3]
$$

$$
f_W(x)=e^{\alpha x^2}\sigma(x)
$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0.$

Theorem

The Witten genus is the universal genus which is rigid and vanishes on $\mathbb{O}P^2$.

The rigidity equation for $\mathbb{O}P^2$ is equivalent to

$$
0 = f(y_1 + y_2)f(y_1 - y_2)f(y_3 + y_4)f(y_3 - y_4) ++ f(y_2 - y_3)f(y_2 + y_3)f(y_1 - y_4)f(y_1 + y_4) ++ f(y_2 - y_4)f(y_2 + y_4)f(y_3 - y_1)f(y_1 + y_3)
$$

Thank you for your attention!

 \leftarrow 14 / 14