On the rigidity of some Hirzebruch genera

(based on arXiv:2402.10049)

Georgii Chernykh

Higher School of Economics Steklov Mathematical Institute

Focus Program on Toric Topology, Geometry and Polyhedral Products Workshop on Toric Topology

> Fields Institute August 23, 2024

・ロット語・ 不能・ 不能・ 不良・ ひゃの

 \varOmega^*_U is the complex cobordism ring

• • = • • = •

2/14

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

A B A A B A

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

A B A A B A

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

 $\varOmega_U^* = \{ {\rm stably \ complex \ closed \ manifolds} \} / \sim$

() 不良) 不良) 一度

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

$$\Omega^*_U = \{ \text{stably complex closed manifolds} \} / \sim$$

$$[M] + [N] = [M \sqcup N]$$

A B A A B A

stably complex structure on M = complex structure on $TM \oplus \mathbb{R}^N$ (up to $\oplus \mathbb{C}^k$)

stably complex manifolds M and N are cobordant if $M \sqcup \overline{N} = \partial W$

$$\Omega^*_U = \{ \text{stably complex closed manifolds} \} / \sim$$

$$[M] + [N] = [M \sqcup N] \quad [M] \cdot [N] = [M \times N]$$

A B A A B A

▲ロ*▲御▶▲周▶▲周▶ 周 ののの

R is a graded commutative $\mathbb Q\text{-algebra}$

R is a graded commutative \mathbb{Q} -algebra Ω_{II}^* is the complex cobordism ring

R is a graded commutative $\mathbb{Q}\text{-algebra}$

 \varOmega_U^* is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega_U^*\to R$

A B A A B A

R is a graded commutative $\mathbb Q\text{-algebra}$

 \varOmega_U^* is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi \colon \varOmega_U^* \to R$

complex genera $\varphi \colon \Omega^*_U \to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + \dots$ (Hirzebruch)

A B M A B M

R is a graded commutative \mathbb{Q} -algebra

 \varOmega_U^* is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi\colon \varOmega_U^*\to R$

complex genera $\varphi \colon \Omega^*_U \to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + \dots$ (Hirzebruch)

 $f(x) = g^{-1}(x), \ g(x) = x + \sum_{k \ge 1} \frac{\varphi([\mathbb{C}P^k])}{k+1} x^{k+1}$ (Mischenko)

医尿道氏试验检 腰

R is a graded commutative \mathbb{Q} -algebra

 \varOmega_U^* is the complex cobordism ring

complex Hirzebruch genus is a ring homomorphism $\varphi \colon \Omega^*_U \to R$

complex genera $\varphi \colon \Omega^*_U \to R$ are in the bijection with the power series $f \in R[[x]]$ s. t. $f(x) = x + \dots$ (Hirzebruch)

$$\begin{aligned} f(x) &= g^{-1}(x), \ g(x) = x + \sum_{k \ge 1} \frac{\varphi([\mathbb{C}P^k])}{k+1} x^{k+1} \ (\mathsf{Mischenko}) \\ \varphi([M]) &= \langle \prod \frac{x_i}{f(x_i)}(\mathcal{T}M), [M]_{\mathbb{Z}} \rangle \end{aligned}$$

Equivariant extension

▲ロト▲御ト▲恵ト▲恵ト 恵 めん(

▶ ▲ 開 ▶ ▲ 周 ▶ ...

4/14

$$\Phi\colon \Omega^*_{U:T^k} \xrightarrow{\mathsf{P}-\mathsf{T}} MU^*_{T^k}(pt)$$

$$\Phi\colon \Omega^*_{U:T^k} \xrightarrow{\mathsf{P}-\mathsf{T}} MU^*_{T^k}(\mathsf{pt}) \to MU^*(\mathsf{B}T^k)$$

▶ ▲ 開 ▶ ▲ 周 ▶ ...

4/14

$$\Phi\colon \varOmega^*_{U:\mathcal{T}^k} \xrightarrow{\mathsf{P}-\mathsf{T}} \mathsf{M}U^*_{\mathcal{T}^k}(\mathsf{pt}) \to \mathsf{M}U^*(\mathsf{B}\mathcal{T}^k) = \Omega^*_U[[u_1,\ldots,u_k]]$$

▶ ▲ 開 ▶ ▲ 周 ▶ ...

4/14

$$\Phi\colon \Omega^*_{U:T^k} \xrightarrow{\mathsf{P}-\mathsf{T}} MU^*_{T^k}(\mathsf{pt}) \to MU^*(\mathsf{BT}^k) = \Omega^*_U[[u_1,\ldots,u_k]]$$

A B M A B M

4/14

 Φ is the universal (complex) toric genus.

$$\Phi\colon \varOmega^*_{U:T^k} \xrightarrow{\mathsf{P}-\mathsf{T}} \mathsf{M}U^*_{T^k}(\mathsf{pt}) \to \mathsf{M}U^*(\mathsf{B}T^k) = \Omega^*_U[[u_1,\ldots,u_k]]$$

 Φ is the universal (complex) toric genus. It is injective (Comezaña, Hanke, Löffler).

(人) 医下子 医下

$$\Phi\colon \varOmega^*_{U:\mathcal{T}^k} \xrightarrow{\mathsf{P}-\mathsf{T}} \mathcal{M}U^*_{\mathcal{T}^k}(\mathsf{pt}) \to \mathcal{M}U^*(\mathcal{B}\mathcal{T}^k) = \Omega^*_U[[u_1,\ldots,u_k]]$$

 Φ is the universal (complex) toric genus. It is injective (Comezaña, Hanke, Löffler).

The equivariant extension of a genus $\varphi \colon \Omega^*_U \to R$ is a composition

$$\varphi^{\mathsf{T}} \colon \Omega^*_{U:\mathsf{T}^k} \xrightarrow{\Phi} \Omega^*_U[[u_1, \dots, u_k]] \xrightarrow{\varphi \colon \Omega^*_U \to \mathsf{R}} R[[x_1, \dots, x_k]]$$

医尿道氏 化基苯二基

A genus $\varphi \colon \Omega^*_U \to R$ is rigid on a T^k -manifold M if $\varphi^T([M]) = const \in R[[x_1, \ldots, x_k]].$

Rigidity

A genus $\varphi \colon \Omega^*_U \to R$ is rigid on a T^k -manifold M if $\varphi^T([M]) = const \in R[[x_1, \ldots, x_k]]$. In fact this constant is $\varphi([M]) \in R$.

• • = • • = •

5/14

Rigidity

A genus $\varphi \colon \Omega^*_U \to R$ is rigid on a T^k -manifold M if $\varphi^T([M]) = const \in R[[x_1, \ldots, x_k]]$. In fact this constant is $\varphi([M]) \in R$.

Theorem (Buchstaber–Panov–Ray)

A genus $\varphi \colon \Omega_U^* \to R$ is rigid on M if and only if we have $\varphi(E) = \varphi(M)\varphi(B)$ for any fibre bundle $E \to B$ with fibre M.

• • = • • = •

A genus $\varphi \colon \Omega^*_U \to R$ is rigid on a T^k -manifold M if $\varphi^T([M]) = const \in R[[x_1, \ldots, x_k]]$. In fact this constant is $\varphi([M]) \in R$.

Theorem (Buchstaber–Panov–Ray)

A genus $\varphi \colon \Omega_U^* \to R$ is rigid on M if and only if we have $\varphi(E) = \varphi(M)\varphi(B)$ for any fibre bundle $E \to B$ with fibre M.

Theorem (Buchstaber–Panov–Ray localization formula)

If a T^k -manifold M has only isolated fixed points, then

$$\varphi^{\mathsf{T}}(\mathsf{M}) = \sum_{\mathsf{p}\in\mathsf{M}^{\mathsf{T}}} \sigma(\mathsf{p}) \prod_{i=1}^{\mathsf{n}} \frac{1}{f(\langle w_i(\mathsf{p}), \mathbf{x} \rangle)}$$

医尿道氏 化基苯二基

•
$$\chi_{a,b} \colon \Omega^*_U \to \mathbb{Q}[a,b], f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}$$

▲日を▲御を▲御を▲御を「御」のAの

• $\chi_{a,b}: \Omega_U^* \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}$, universal T^k -rigid genus (Musin)

• $\chi_{a,b} \colon \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)

A B M A B M

6/14

- $\chi_{a,b}: \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} \colon \Omega^*_U \to \mathbb{Q}[\varepsilon, \delta]$

• • = • • = •

• $\chi_{a,b}: \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} - e^{bx}}{ae^{bx} - be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)

▶ ▲ 聖 ▶ ④ 国 ▶ □

6/14

• (Oriented) elliptic genus $\varphi_{ell} \colon \Omega^*_U \to \mathbb{Q}[\varepsilon, \delta], f(x) = \operatorname{sn}(x)$

- $\chi_{a,b}: \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} \colon \Omega^*_U \to \mathbb{Q}[\varepsilon, \delta], f(x) = \operatorname{sn}(x)$

$$(\operatorname{sn}'(x))^2 = 1 - 2\delta(\operatorname{sn}(x))^2 + \varepsilon(\operatorname{sn}(x))^4$$

▶ ▲ 聖 ▶ ④ 国 ▶ □

- $\chi_{a,b}: \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} \colon \Omega^*_U \to \mathbb{Q}[\varepsilon, \delta], f(x) = \operatorname{sn}(x)$

$$(\operatorname{sn}'(x))^2 = 1 - 2\delta(\operatorname{sn}(x))^2 + \varepsilon(\operatorname{sn}(x))^4$$

$$\varepsilon = \delta^2$$
: $\operatorname{sn}(x) = \operatorname{th}(x)$

▶ ▲ 聖 ▶ ④ 国 ▶ □

- $\chi_{a,b}: \Omega^*_U \to \mathbb{Q}[a, b], f(x) = \frac{e^{ax} e^{bx}}{ae^{bx} be^{ax}}$, universal T^k -rigid genus (Musin), universal $\mathbb{C}P^2$ -rigid taking nonzero value on $\mathbb{C}P^2$ (Buchstaber–Bunkova)
- (Oriented) elliptic genus $\varphi_{ell} \colon \Omega^*_U \to \Omega^*_{SO} \to \mathbb{Q}[\varepsilon, \delta], f(x) = \operatorname{sn}(x)$

$$(\operatorname{sn}'(x))^2 = 1 - 2\delta(\operatorname{sn}(x))^2 + \varepsilon(\operatorname{sn}(x))^4$$

$$\varepsilon = \delta^2$$
: $\operatorname{sn}(x) = \operatorname{th}(x)$

the elliptic genus is the universal $\mathbb{H}P^2$ -rigid genus (Kreck–Stolz)

• • • • • • • • • • • •

・ロット語・ 不能・ 不能・ 不自・

$$\varphi_{Kr} \colon \Omega^*_U \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$

Krichever genus

$$\varphi_{Kr} \colon \Omega_U^* \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$
$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x, z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]$$

8/14

▲日 → ▲圖 → ▲ 画 → ▲ 画 → ▲ 画 →

Krichever genus

$$\varphi_{Kr} \colon \Omega^*_U \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$

$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]$$
$$\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots$$
$$(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3$$

▲日 医 ▲圖 医 ▲ 圖 医 ▲ 圖 医 -

康

$$\varphi_{Kr} \colon \Omega^*_U \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$

$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]$$
$$\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots$$
$$(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3$$

 $\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]$

▲圖 ▶ ▲ 周 ▶ ▲ 周 ▶ …

·唐

$$\varphi_{Kr} \colon \Omega^*_U \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$

$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]$$

$$\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots$$

$$(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3$$

$$\wp(x) = -(\ln \sigma(x))' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]$$

$$\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)\sigma(x)}e^{\zeta(z)x}$$

·唐

$$\varphi_{Kr} \colon \Omega^*_U \to \mathbb{Q}[\alpha, b_1, b_2, b_3]$$

$$f_{Kr}(x) = \frac{e^{\alpha x}}{\Phi(x,z)} \in \mathbb{Q}[\alpha, b_1, b_2, b_3][[x]]$$

$$\wp(x) = \frac{1}{x^2} + \frac{1}{20}g_2x^2 + \frac{1}{28}g_3x^4 + \dots$$

$$(\wp'(x))^2 = 4(\wp(x))^3 - g_2\wp(x) - g_3$$

$$\wp(x) = -(\ln \sigma(x))'' \quad \zeta(x) = (\ln \sigma(x))' \quad \sigma(x) \in \mathbb{Q}[g_2, g_3][[x]]$$

$$\Phi(x, z) = \frac{\sigma(z - x)}{\sigma(z)\sigma(x)}e^{\zeta(z)x}$$

$$\frac{1}{\Phi(x, z)} \in \mathbb{Q}[b_1, b_2, b_3][[x]], \ b_1 = \wp(z), b_2 = \wp'(z), b_3 = g_2$$

康

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on $\mathbb{C}P^2$, then it is a Krichever genus (Buchstaber–Bunkova).

A B > A B

Theorem (Krichever)

The Krichever genus is rigid on any SU-manifold.

If a genus is rigid and vanishes on $\mathbb{C}P^2$, then it is a Krichever genus (Buchstaber–Bunkova).

Theorem (Buchstaber–Panov–Ray)

The Krichever genus vanishes on any quasitoric SU-manifold.

A B M A B M

・日本・画を・画をよりを ゆうのの

$$\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]$$

$$\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]$$
$$\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \ \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \ \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,$$
$$\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2$$

▲ロシ ▲圖 ▶ ▲ 恵 ▶ ▲ 恵 ▶ 一夏 … の Q ()

$$\Omega_{SU}^* \otimes \mathbb{Z}[1/2] = \mathbb{Z}[1/2][y_2, y_3, \ldots]$$
$$\Omega_{SU}^4 = \mathbb{Z}\langle y_2 \rangle, \ \Omega_{SU}^6 = \mathbb{Z}\langle y_3 \rangle, \ \Omega_{SU}^8 = \mathbb{Z}\langle \frac{1}{4}y_2^2, y_4 \rangle,$$
$$\Omega_{SU}^{10} = \mathbb{Z}\langle \frac{1}{2}y_2y_3, y_5 \rangle \oplus \mathbb{Z}/2$$

$$y_3 = [S^6 = G_2/SU(3)]$$

0/14

▲ロシ ▲圖 ▶ ▲ 恵 ▶ ▲ 恵 ▶ □ 夏 □ の Q ()

$$\begin{split} \Omega_{SU}^* \otimes \mathbb{Z}[1/2] &= \mathbb{Z}[1/2][y_2, y_3, \ldots] \\ \Omega_{SU}^4 &= \mathbb{Z} \langle y_2 \rangle, \ \ \Omega_{SU}^6 &= \mathbb{Z} \langle y_3 \rangle, \ \ \Omega_{SU}^8 &= \mathbb{Z} \langle \frac{1}{4} y_2^2, y_4 \rangle, \\ \Omega_{SU}^{10} &= \mathbb{Z} \langle \frac{1}{2} y_2 y_3, y_5 \rangle \oplus \mathbb{Z}/2 \\ y_3 &= [S^6 &= G_2/SU(3)] \quad \ \ T^2 \curvearrowright S^6 \end{split}$$

10/14

▲ロシ ▲圖 ▶ ▲ 恵 ▶ ▲ 恵 ▶ □ 夏 □ の Q ()

$$\begin{split} \Omega_{SU}^* \otimes \mathbb{Z}[1/2] &= \mathbb{Z}[1/2][y_2, y_3, \ldots] \\ \Omega_{SU}^4 &= \mathbb{Z} \langle y_2 \rangle, \ \Omega_{SU}^6 &= \mathbb{Z} \langle y_3 \rangle, \ \Omega_{SU}^8 &= \mathbb{Z} \langle \frac{1}{4} y_2^2, y_4 \rangle, \\ \Omega_{SU}^{10} &= \mathbb{Z} \langle \frac{1}{2} y_2 y_3, y_5 \rangle \oplus \mathbb{Z}/2 \\ y_3 &= [S^6 = G_2/SU(3)] \quad T^2 \curvearrowright S^6 \end{split}$$

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on S^6 . 1) If $\varphi([S^6]) \neq 0$, then φ is a Krichever genus with $b_2 \neq 0$; 2) If $\varphi([S^6]) = 0$, then $f(x) = e^{\beta x} \tilde{f}(x)$ for an odd series $\tilde{f}(x)$.

$$\begin{split} \Omega_{SU}^* \otimes \mathbb{Z}[1/2] &= \mathbb{Z}[1/2][y_2, y_3, \ldots] \\ \Omega_{SU}^4 &= \mathbb{Z} \langle y_2 \rangle, \ \Omega_{SU}^6 &= \mathbb{Z} \langle y_3 \rangle, \ \Omega_{SU}^8 &= \mathbb{Z} \langle \frac{1}{4} y_2^2, y_4 \rangle, \\ \Omega_{SU}^{10} &= \mathbb{Z} \langle \frac{1}{2} y_2 y_3, y_5 \rangle \oplus \mathbb{Z}/2 \\ y_3 &= [S^6 = G_2/SU(3)] \quad T^2 \curvearrowright S^6 \end{split}$$

Theorem (Buchstaber–Panov–Ray)

Let φ be a genus which is rigid on S^6 . 1) If $\varphi([S^6]) \neq 0$, then φ is a Krichever genus with $b_2 \neq 0$; 2) If $\varphi([S^6]) = 0$, then $f(x) = e^{\beta x} \tilde{f}(x)$ for an odd series $\tilde{f}(x)$.

If
$$b_2 = 0$$
, then $f_{Kr} = e^{\alpha x} \operatorname{sn}(x)$.

▲圖 ▶ ▲ 圖 ▶ ④ 圖 ▶ □ 圖

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

• • = • • = •

11/14

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

• • = • • = •

11/14

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} imes \Delta^{2k_2+1}$

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2+1}$

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^1 \times \mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure

医尿道氏 化基苯二基

Classes y_i with $i \ge 5$ can be represented by quasitoric SU-manifolds.

Integer linear combinations of quasitoric *SU*-manifolds $\widetilde{L}(2k_1, 2k_2 + 1)$ and $\widetilde{N}(2k_1, 2k_2 + 1)$.

 $\widetilde{L}(2k_1, 2k_2 + 1)$ is over $\Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure $\widetilde{N}(2k_1, 2k_2 + 1)$ is over $\Delta^1 \times \Delta^{2k_1} \times \Delta^{2k_2+1}$, projectivisation of a sum of line bundles over $\mathbb{C}P^1 \times \mathbb{C}P^{2k_1}$ with a "twisted" stably complex structure In particular, $y_5 = [\widetilde{L}(2, 3)]$.

医尿道氏 化原因合理

Theorem

Let φ be a genus which is rigid on S^6 and on $\widetilde{L}(2,3)$. If $\varphi([S^6]) = 0$, then $f(x) = e^{\alpha x} \operatorname{sn}(x)$.

A B K A B K

Theorem

Let φ be a genus which is rigid on S^6 and on $\widetilde{L}(2,3)$. If $\varphi([S^6]) = 0$, then $f(x) = e^{\alpha x} \operatorname{sn}(x)$.

• • = • • = •

12/14

Corollary

The Krichever genus is the universal genus which is rigid on S^6 and $\widetilde{L}(2,3)$. In particular, it is the universal SU-rigid genus.

・ロット語・スポット語・ (中)

 $\varphi_W \colon \Omega^*_{SO} \to \mathbb{Q}[\alpha, g_2, g_3]$

$$\varphi_W \colon \Omega^*_{SO} \to \mathbb{Q}[\alpha, g_2, g_3]$$

$$f_W(x) = e^{\alpha x^2} \sigma(x)$$

▲目外▲圖を▲理を回る

康

$$\varphi_W \colon \Omega^*_{SO} \to \mathbb{Q}[\alpha, g_2, g_3]$$

$$f_W(x) = e^{\alpha x^2} \sigma(x)$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0$.

康

通 ト イ ヨ ト イ ヨ ト

$$\varphi_W \colon \Omega^*_{SO} \to \mathbb{Q}[\alpha, g_2, g_3]$$

$$f_W(x) = e^{\alpha x^2} \sigma(x)$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0$.

Theorem

The Witten genus is the universal genus which is rigid and vanishes on $\mathbb{O}P^2$.

(A) (E) (A) (E) (A)

$$\varphi_W \colon \Omega^*_{SO} \to \mathbb{Q}[\alpha, g_2, g_3]$$

$$f_W(x) = e^{\alpha x^2} \sigma(x)$$

Witten genus is rigid on $\mathbb{O}P^2 = F_4/Spin(9)$ and $\varphi_W([\mathbb{O}P^2]) = 0$.

Theorem

The Witten genus is the universal genus which is rigid and vanishes on $\mathbb{O}P^2$.

The rigidity equation for $\mathbb{O}P^2$ is equivalent to

$$0 = f(y_1 + y_2)f(y_1 - y_2)f(y_3 + y_4)f(y_3 - y_4) + + f(y_2 - y_3)f(y_2 + y_3)f(y_1 - y_4)f(y_1 + y_4) + + f(y_2 - y_4)f(y_2 + y_4)f(y_3 - y_1)f(y_1 + y_3)$$

(A) (E) (A) (E) (A)

Thank you for your attention!

