Geometric families of degenerations from mutations of polytopes

Megumi Harada

McMaster University

Fields Institute Workshop on Toric Topology

August 19, 2024

Based on: ArXiv: 2408.01785 (Joint with Laura Escobar and Christopher Manon) and 2408.01788 (Joint with Adrian Cook and Laura Escobar and Christopher Manon)

Toric degenerations

Let $P \subset \mathbb{R}^d$ be a d -dimensional polytope with vertices in \mathbb{Z}^d and let $P \cap \mathbb{Z}^d = \{\alpha_0, \ldots, \alpha_n\}.$

The toric variety X_P is the closure of the image of the map $(\mathbb{C}^*)^d \to \mathbb{P}^n$ given by $x \mapsto (x^{\alpha_0}, \dots, x^{\alpha_n}).$

Toric degenerations

Let $P \subset \mathbb{R}^d$ be a d -dimensional polytope with vertices in \mathbb{Z}^d and let $P \cap \mathbb{Z}^d = \{\alpha_0, \ldots, \alpha_n\}.$

The toric variety X_P is the closure of the image of the map $(\mathbb{C}^*)^d \to \mathbb{P}^n$ given by $x \mapsto (x^{\alpha_0}, \dots, x^{\alpha_n}).$

Question. Given a variety $X \subseteq \mathbb{P}^n$, is there a polytope P such that the toric variety X_P approximates X?

Toric degenerations

Let $P \subset \mathbb{R}^d$ be a d -dimensional polytope with vertices in \mathbb{Z}^d and let $P \cap \mathbb{Z}^d = \{\alpha_0, \ldots, \alpha_n\}.$

The toric variety X_P is the closure of the image of the map $(\mathbb{C}^*)^d \to \mathbb{P}^n$ given by $x \mapsto (x^{\alpha_0}, \dots, x^{\alpha_n}).$

Question. Given a variety $X \subseteq \mathbb{P}^n$, is there a polytope P such that the toric variety X_P approximates X ?

Definition. A **toric degeneration** of a variety $X \subseteq \mathbb{P}^n$ is a flat family $\pi : \mathfrak{X} \to \mathbb{C}$, where the general fiber is X and the special fiber is a toric variety X_P .

Newton–Okounkov bodies

Let X be a projective variety of dimension d .

Equip \mathbb{Z}^{d+1} with a total order \succ . A function $\nu: \mathbb{C}[X]\setminus\{0\} \to \mathbb{Z}^{d+1}$ is a valuation if

- $\blacktriangleright \nu(f+g) \succeq \min\{\nu(f), \nu(g)\},\$ \blacktriangleright $\nu(fg) = \nu(f) + \nu(g)$, and
- $\blacktriangleright \nu(c) = 0$ for all $c \in \mathbb{C}^*$.

Definition. (Okounkov, Lazarsfeld–Mustață, Kaveh–Khovanskii) The **Newton–Okounkov body** for (X, ν) is $\Delta(X,\nu) := \overline{\mathsf{cone}(\mathsf{im}(\nu))} \cap (\{1\} \times \mathbb{R}^d).$

Newton–Okounkov bodies

Let X be a projective variety of dimension d .

Equip \mathbb{Z}^{d+1} with a total order \succ . A function $\nu: \mathbb{C}[X]\setminus\{0\} \to \mathbb{Z}^{d+1}$ is a valuation if

$$
\triangleright \nu(f+g) \succeq \min{\nu(f), \nu(g)},
$$

$$
\triangleright \nu(fg) = \nu(f) + \nu(g), \text{ and}
$$

 $\blacktriangleright \nu(c) = 0$ for all $c \in \mathbb{C}^*$.

Definition. (Okounkov, Lazarsfeld–Mustață, Kaveh–Khovanskii) The **Newton–Okounkov body** for (X, ν) is $\Delta(X,\nu) := \overline{\mathsf{cone}(\mathsf{im}(\nu))} \cap (\{1\} \times \mathbb{R}^d).$

Theorem. (Anderson, 2013) When $\Delta(X, \nu)$ is a lattice polytope, we have a degeneration of X to the normalization of the toric variety of $\Delta(X,\nu)$.

Newton–Okounkov bodies

Let X be a projective variety of dimension d .

Equip \mathbb{Z}^{d+1} with a total order \succ . A function $\nu: \mathbb{C}[X]\setminus\{0\} \to \mathbb{Z}^{d+1}$ is a valuation if

$$
\triangleright \nu(f+g) \succeq \min{\nu(f), \nu(g)},
$$

$$
\triangleright \nu(fg) = \nu(f) + \nu(g), \text{ and}
$$

 $\blacktriangleright \nu(c) = 0$ for all $c \in \mathbb{C}^*$.

Definition. (Okounkov, Lazarsfeld–Mustață, Kaveh–Khovanskii) The **Newton–Okounkov body** for (X, ν) is $\Delta(X,\nu) := \overline{\mathsf{cone}(\mathsf{im}(\nu))} \cap (\{1\} \times \mathbb{R}^d).$

Theorem. (Anderson, 2013) When $\Delta(X, \nu)$ is a lattice polytope, we have a degeneration of X to the normalization of the toric variety of $\Delta(X,\nu)$.

When the tropicalization of X is well-behaved [Kaveh–Manon, 2016] construct valuations ν such that $\Delta(X,\nu)$ is a lattice polytope.

Tropical geometry and Newton–Okounkov bodies

Choose a presentation $\mathbb{C}[x_1, \ldots, x_n]/I$ for $\mathbb{C}[X]$, I homogeneous.

 $\mathsf{Trop}(I)\!:=\!\{w\in\mathbb{R}^n\mid \mathsf{in}_w(I) \text{ contains no monomials}\}.$

Trop(1) is a fan in \mathbb{R}^n with cones $\mathcal{C}_w = \overline{\{x \in \mathbb{R}^n \mid \text{in}_x(I) = \text{in}_w(I)\}}$ for $w \in \mathbb{R}^n$.

A cone C of Trop (I) is **prime** if $in_w(I)$ is prime for some/all $w \in C^{\circ}$.

Theorem. (Kaveh-Manon, 2016) Let C be a prime cone of $Trop(I)$ and $\{u_1, \ldots, u_r\} \subset C$ be maximally linearly independent. There is a valuation $\overline{\nu}_C$ of A such that its Newton-Okounkov body $\Delta(A, \nu_C) \subset \mathbb{R}^d$ is the convex hull of the columns of the matrix with rows u_1, \ldots, u_r .

Mutations of Newton-Okounkov bodies

Theorem. (Escobar–H, 2019) Let C_1 and C_2 be two prime cones of $Trop(I)$ of maximal dimension sharing a codimension-1 face. There exist natural projections $\mathsf{p}_1,\mathsf{p}_2:\mathbb{R}^d\to\mathbb{R}^{d-1}$ such that

$$
\Delta(X,\nu_{C_1})\stackrel{\mathsf{p}_1}{\longrightarrow}\Delta_{C_1\cap C_2} \stackrel{\mathsf{p}_2}{\longleftarrow}\Delta(X,\nu_{C_2})
$$

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijection $\Delta(X,\nu_{C_1})\to\Delta(X,\nu_{C_2}).$

Mutations of Newton-Okounkov bodies

Theorem. (Escobar–H, 2019) Let C_1 and C_2 be two prime cones of $Trop(I)$ of maximal dimension sharing a codimension-1 face. There exist natural projections $\mathsf{p}_1,\mathsf{p}_2:\mathbb{R}^d\to\mathbb{R}^{d-1}$ such that

$$
\Delta(X,\nu_{C_1})\stackrel{p_1}{\longrightarrow}\Delta_{C_1\cap C_2}\stackrel{\rho_2}{\longleftarrow}\Delta(X,\nu_{C_2})
$$

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijection $\Delta(X,\nu_{C_1})\to\Delta(X,\nu_{C_2}).$

Remark 1. Ilten interprets this piecewise-linear bijection as a generalization of the combinatorial mutations of Akhtar-Coates-Galkin-Kasprzyk. (In the context of their study of mirror symmetry for Fano manifolds)

Remark 2. In the case of the Grassmannian of 2-planes in \mathbb{C}^m the second bijection is connected to cluster mutations.

Families of degenerations from mutations of polytopes

 $X \rightarrow \text{Top}(X) \rightarrow$ a collection of Newton–Okounkov polytopes and piecewise-linear bijections between them.

... as suggested above, mutations of polytopes also appear in the theory of cluster algebras/varieties, mirror symmetry, the study of Fano manifolds/varieties....

"Million-dollar question": is there a systematic theory that can unify these??

Families of degenerations from mutations of polytopes

In [Escobar-H-Manon, 2024] we have proposed a theory which generalizes the theory of toric varieties by

- ▶ replacing the classical lattice $M \cong \mathbb{Z}^r$ with a collection of lattices which are related by piecewise-linear bijections ("mutations"), and
- \blacktriangleright replacing the Laurent polynomial ring $\mathbb{K}[x_1^{\pm},\cdots,x_r^{\pm}],$ together with its usual valuation with a more general \mathbb{K} -algebra equipped with a valuation.

Families of degenerations from mutations of polytopes

In [Escobar-H-Manon, 2024] we have proposed a theory which generalizes the theory of toric varieties by

- ▶ replacing the classical lattice $M \cong \mathbb{Z}^r$ with a collection of lattices which are related by piecewise-linear bijections ("mutations"), and
- \blacktriangleright replacing the Laurent polynomial ring $\mathbb{K}[x_1^{\pm},\cdots,x_r^{\pm}],$ together with its usual valuation with a more general \mathbb{K} -algebra equipped with a valuation.

By doing the above, we gain multiple benefits:

- ▶ We systematize and generalize the phenomenon in [Escobar–H].
- \blacktriangleright We exhibit a family $\{\mathfrak{X}_{\alpha}\}\;$ of degenerations of a single variety X, where each member \mathfrak{X}_{α} of the family has as its central fiber the toric variety associated to a polytope which is mutation-related to the others in the family.
- \triangleright We develop a generalization of the classical theory of polytopes together with a combinatorics-geometry dictionary.

Polyptych lattices

A **polyptych lattice** of rank r is $\mathcal{M} = (\{M_i\}_{i\in I}, \{\mu_{ij}\}_{i,j\in I})$ such that

 $\blacktriangleright M_i \simeq \mathbb{Z}^r$.

$$
\blacktriangleright \mu_{ij}: M_i \to M_j \text{ is a piecewise linear bijection.}
$$

$$
\blacktriangleright \mu_{ii} = \text{id} \text{ and } \mu_{jk} \circ \mu_{ij} = \mu_{ik}.
$$

Example. The trivial polyptych lattice of rank r is $\mathcal{M}_{\circ}^r := (\{\mathbb{Z}^r\}, \{\text{id}\})$.

Example. Let $M_2 = (\{M_1, M_2\}, \{\mu_{12}\})$, where $M_1 \simeq M_2 \simeq \mathbb{Z}^2$ and $\mu_{12}(x, y) = (\min\{0, y\} - x, y).$

An element of M is $m = (m_i)_{i \in I}$ such that for all $i \in I$, $m_i \in M_i$ and for all $i, j \in I$, $\mu_{ij}(m_i) = m_j$.

Given $\mathcal{S} \subseteq \mathcal{M}$, the *i*-**th chart** of \mathcal{S} is the set $\mathcal{S}_i := \{ s \mid \exists m \in \mathcal{S}, m_i = s \}.$

Polyptych: "A sculpted or painted object composed of at least two, and usually more than three, panels. Most polyptychs functioned as altarpieces; the panels of some are hinged so that they may be opened and closed." (Oxford Reference)

```
Greek: "poly" = "many", "ptukhe" = "fold"
```
Our collaborator Chris Manon likes to abbreviate this and call them "p-lattices". This has the advantage of linguistic suggestiveness:

- \blacktriangleright "p" for "polyptych"
- ▶ "p" for "piecewise (linear)"
- \blacktriangleright In particular, "polyptych lattice" abbreviates to "PL" which also, very conveniently, (or, confusingly?) suggests "Piecewise Linear" (!)

Suggestion from Lauren Williams (Mirror Symmetry Workshop, King's College London, June 2024):

▶ "p" for "pretentious" ?

PL halfspaces

A **point** of M is a collection $p = \{p_i : M_i \to \mathbb{Z} \mid i \in I\}$ such that

 \triangleright ∀*i*, *j* ∈ *l*, $p_i \circ \mu_{ii} = pi_i$ $\blacktriangleright \forall i \in I$ and $\forall m, m' \in M_i$, we have $p_i(m)+p_i(m')=\min_{j\in I}\{p_j(\mu_{ij}(m)+\mu_{ij}(m'))\}$

where the $+$ on the RHS denotes addition in the lattice $M_j.$ We denote by $Sp(M)$ the collection of points of M.

Example. $Sp(\mathcal{M}_2) \cong \{(a, a', b) \in \mathbb{Z}^3 \mid a + a' = min(0, b)\}.$

PL halfspaces

A **point** of M is a collection $p = \{p_i : M_i \to \mathbb{Z} \mid i \in I\}$ such that

 \blacktriangleright ∀*i*, *j* ∈ *l*, $p_i \circ \mu_{ii} = pi_i$ $\blacktriangleright \forall i \in I$ and $\forall m, m' \in M_i$, we have $p_i(m)+p_i(m')=\min_{j\in I}\{p_j(\mu_{ij}(m)+\mu_{ij}(m'))\}$

where the $+$ on the RHS denotes addition in the lattice $M_j.$ We denote by $Sp(M)$ the collection of points of M.

Example.
$$
Sp(\mathcal{M}_2) \cong \{(a, a', b) \in \mathbb{Z}^3 \mid a + a' = min(0, b)\}.
$$

The PL-halfspace associated to $p \in Sp(\mathcal{M})$ and $a \in \mathbb{Z}$ is $\mathcal{H}_{p,q} := \{m \in \mathcal{M} \mid p(m) \geq a\}.$

Example. A PL halfspace in M_2 :

PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL polytope is **integral** if for all $i \in I$ its chart in M_i is a lattice polytope.

Example. An integral PL polytope in M_2 :

PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL polytope is **integral** if for all $i \in I$ its chart in M_i is a lattice polytope.

Example. A PL polytope that is not lattice:

Compactifications via PL polytopes

1. Toric case.

Let P be a lattice polytope in \mathbb{R}^n . The toric variety X_P is a compactification of the torus $\mathsf{Spec}(\mathbb{C}[x_1^{\pm 1},\ldots,x_r^{\pm 1}]).$

The homogeneous coordinate ring of the toric variety X_P is given by $\mathbb{C}[X_P] = \bigoplus_{k=0}^{\infty} \mathbb{C}[x^m \mid m \in \mathbb{Z}^r \cap kP].$

Compactifications via PL polytopes

1. Toric case.

Let P be a lattice polytope in \mathbb{R}^n . The toric variety X_P is a compactification of the torus $\mathsf{Spec}(\mathbb{C}[x_1^{\pm 1},\ldots,x_r^{\pm 1}]).$

The homogeneous coordinate ring of the toric variety X_P is given by $\mathbb{C}[X_P] = \bigoplus_{k=0}^{\infty} \mathbb{C}[x^m \mid m \in \mathbb{Z}^r \cap kP].$

We have a valuation $\nu: \mathbb{C}[x_1^{\pm 1},\ldots,x_r^{\pm 1}] \to \{\mathsf{PWL} \text{ functions } \mathbb{Z}^r \to \mathbb{Z}\}$ given by $\nu(\sum c_\alpha x^\alpha) := \min_{c_\alpha \neq 0} \langle \alpha, - \rangle.$

The support function $\psi_P : \mathbb{Z}^r \to \mathbb{R}$ of a polytope P is defined by $\psi_P := \min\{\langle m, -\rangle \mid m \in P\}.$

We have that $\mathbb{C}[X_P] = \bigoplus_{k=0}^{\infty} \{f \in \mathbb{C}[x_1^{\pm 1}, \ldots, x_n^{\pm 1}] \mid \nu(f) \geq \psi_{kP}\}.$

Detropicalization of a polyptych lattice

Assume that M is **dualizable**. Roughly, this means there is a p-lattice $\mathcal N$ and a pair of bijections $\mathfrak{N} : \mathcal{N} \to \mathsf{Sp}(\mathcal{M})$ and $\mathfrak{M} : \mathcal{M} \to \mathsf{Sp}(\mathcal{N})$.

Let P_N be the semialgebra generated by Sp(N) with respect to the operations $\oplus := \text{min}$ and $\odot := +$.

Definition. Given a domain A, a function $\nu : A \rightarrow \mathcal{P}_{\mathcal{N}}$ is a **valuation** if

- $\blacktriangleright \nu(f+g) > \nu(f) \oplus \nu(g),$
- \blacktriangleright $\nu(fg) = \nu(f) \odot \nu(g)$, and
- $\blacktriangleright \nu(c) = 0$ for all $c \in \mathbb{C}^*$.

A detropicalization of M is a domain A together with a valuation $\nu: \mathcal{A} \to \mathcal{P}_{\mathcal{N}}$ such that $Sp(\mathcal{N}) \subseteq \text{im}(\nu)$.

Detropicalization of a polyptych lattice

Assume that M is **dualizable**. Roughly, this means there is a p-lattice $\mathcal N$ and a pair of bijections $\mathfrak{N} : \mathcal{N} \to \mathsf{Sp}(\mathcal{M})$ and $\mathfrak{M} : \mathcal{M} \to \mathsf{Sp}(\mathcal{N})$.

Let P_N be the semialgebra generated by $Sp(N)$ with respect to the operations $\oplus := \text{min}$ and $\odot := +$.

Definition. Given a domain A, a function $\nu : A \rightarrow \mathcal{P}_N$ is a **valuation** if

$$
\blacktriangleright \nu(f+g) \geq \nu(f) \oplus \nu(g),
$$

$$
\blacktriangleright \ \nu(fg) = \nu(f) \odot \nu(g), \text{ and}
$$

$$
\blacktriangleright \nu(c) = 0 \text{ for all } c \in \mathbb{C}^*.
$$

A detropicalization of M is a domain A together with a valuation $\nu: \mathcal{A} \to \mathcal{P}_{\mathcal{N}}$ such that $Sp(\mathcal{N}) \subseteq \text{im}(\nu)$.

Example. For the trivial p-lattice of rank r , $\mathcal{M}_{\circ}^r := (\{\mathbb{Z}^r\}, \{\text{id}\})$, recall that $\mathsf{Sp}(\mathcal{M}_{\circ}^r)=\mathsf{Hom}(\mathbb{Z}^r,\mathbb{Z}).$ The dual is \mathcal{M}_{\circ}^r and $\mathcal{P}_{\mathcal{M}_{\circ}^r}$ is the set of piecewise-linear concave functions on \mathbb{Z}^r .

The ring $\mathbb{C}[x_1^{\pm 1},\ldots,x_r^{\pm 1}]$ is a detropicalization of \mathcal{M}'_\circ with valuation $\nu(\sum c_\alpha x^\alpha) := \bigoplus \langle \alpha, - \rangle.$ $c_{\alpha} \neq 0$

Detropicalization of a polyptych lattice

Assume that M is **dualizable**. Roughly, this means there is a p-lattice $\mathcal N$ and a pair of bijections $\mathfrak{N} : \mathcal{N} \to \mathsf{Sp}(\mathcal{M})$ and $\mathfrak{M} : \mathcal{M} \to \mathsf{Sp}(\mathcal{N})$.

Let P_N be the semialgebra generated by $Sp(N)$ with respect to the operations $\oplus := \text{min}$ and $\odot := +$.

Definition. Given a domain A, a function $\nu : A \rightarrow \mathcal{P}_{\mathcal{N}}$ is a **valuation** if

$$
\blacktriangleright \nu(f+g) \geq \nu(f) \oplus \nu(g),
$$

$$
\blacktriangleright \nu(fg) = \nu(f) \odot \nu(g), \text{ and}
$$

$$
\blacktriangleright \ \nu(c) = 0 \text{ for all } c \in \mathbb{C}^*.
$$

A detropicalization of M is a domain A together with a valuation $\nu: \mathcal{A} \to \mathcal{P}_{\mathcal{N}}$ such that $Sp(\mathcal{N}) \subseteq \text{im}(\nu)$.

Example. Let $\mathcal{A} = \mathbb{C}[x_1, x_2, t^{\pm 1}]/\langle x_1x_2 - 1 - t \rangle$. There exists a valuation ν such that (A, ν) is a detropicalization of \mathcal{M}_2 .

Remark. For each $d, r \in \mathbb{N}$ we give a p-lattice $\mathcal{M}_{d,r}$ together with detropicalization $(\mathcal{A}_{d,r}, \nu_{d,r})$ where $\mathcal{A}_{d,r} = \mathbb{C}[x_1, \ldots, x_d, t_1^{\pm 1}, \ldots, t_r^{\pm 1}]/\langle x_1 \cdots x_d - t_1 - \cdots - t_r \rangle$.

Compactifications via PL polytopes

2. PL case.

Let A be a detropicalization of M with valuation ν and Δ an integral PL polytope.

Let N be the dual of M with bijection $\mathfrak{M} : \mathcal{M} \to \mathsf{Sp}(\mathcal{N})$.

The support function $\psi_{\Lambda}: \mathcal{N} \to \mathbb{R}$ of Δ is defined by $\psi_{\Delta} := \min \{ \mathfrak{M}(m) \mid m \in \Delta \cap \mathcal{M} \}.$

Define the graded algebra $\mathcal{A}_{\Delta} := \bigoplus_{k=0}^{\infty} \{f \in \mathcal{A} \mid \nu(f) \geq \psi_{k\Delta}\}.$

Compactifications via PL polytopes

2. PL case.

Let A be a detropicalization of M with valuation ν and Δ an integral PL polytope.

Let N be the dual of M with bijection $\mathfrak{M} : \mathcal{M} \to \mathsf{Sp}(\mathcal{N})$.

The support function $\psi_{\Lambda}: \mathcal{N} \to \mathbb{R}$ of Δ is defined by $\psi_{\Lambda} := \min \{ \mathfrak{M}(m) \mid m \in \Delta \cap \mathcal{M} \}.$

Define the graded algebra $\mathcal{A}_{\Delta} := \bigoplus_{k=0}^{\infty} \{f \in \mathcal{A} \mid \nu(f) \geq \psi_{k\Delta}\}.$

Theorem. (Escobar–H–Manon) $X_{\Delta} := Proj(A_{\Delta})$ is a compactification of $\operatorname{\mathsf{Spec}}(\mathcal{A})$. Moreover, for each $i\in I,$ the chart image of Δ in M_i is a Newton–Okounkov body of X_Δ and these polytopes are connected by the PWL bijections μ_{ii} .

Geometric properties

Theorem. (Escobar–H–Manon) $X_{\Delta} := Proj(A_{\Delta})$ is a compactification of $\operatorname{\mathsf{Spec}}(\mathcal{A})$. Moreover, for each $i\in I,$ the chart image of Δ in M_i is a Newton–Okounkov body of X_Δ and these polytopes are connected by the PWL bijections μ_{ii} .

Theorem. (Escobar–H–Manon) Suppose each chart image Δ_i of Δ is a lattice polytope. There exists a toric degeneration $\pi : \mathfrak{X}_i \to \mathbb{C}$ with generic fiber isomorphic to X_{Λ} and special fiber the toric variety associated to Δ_i .

Geometric properties

Theorem. (Escobar–H–Manon) $X_{\Delta} := Proj(A_{\Delta})$ is a compactification of $\operatorname{\mathsf{Spec}}(\mathcal{A})$. Moreover, for each $i\in I,$ the chart image of Δ in M_i is a Newton–Okounkov body of X_Δ and these polytopes are connected by the PWL bijections μ_{ii} .

Theorem. (Escobar–H–Manon) Suppose each chart image Δ_i of Δ is a lattice polytope. There exists a toric degeneration $\pi : \mathfrak{X}_i \to \mathbb{C}$ with generic fiber isomorphic to X_{Λ} and special fiber the toric variety associated to Δ_i .

Moreover,

- \blacktriangleright \mathcal{A}_{\wedge} is finitely generated.
- ▶ If A is normal, then X_{Λ} is also normal.
- \triangleright X_{Λ} is arithmetically Cohen-Macaullay.
- ▶ If A is a UFD, then X_{Δ} has a finitely generated class group and a finitely generated Cox ring.

We give a family of rank-2, two-chart examples in (Cook-Escobar-H-Manon), and also give lots of sample computations for this family, e.g. the PL analogue of Gorenstein-Fano polytopes.

Thank you!