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Toric degenerations

Let P ⊂ Rd be a d-dimensional polytope with vertices in Zd and let
P ∩ Zd = {α0, . . . , αn}.

The toric variety XP is the closure of the image of the map (C∗)d → Pn

given by x 7→ (xα0 , . . . , xαn).

Question. Given a variety X ⊆ Pn, is there a polytope P such that the
toric variety XP approximates X?

Definition. A toric degeneration of a variety X ⊆ Pn is a flat family
π : X→ C, where the general fiber is X and the special fiber is a toric
variety XP .
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Newton–Okounkov bodies

Let X be a projective variety of dimension d .

Equip Zd+1 with a total order ≻. A function ν : C[X ] \ {0} → Zd+1 is a
valuation if

▶ ν(f + g) ⪰ min{ν(f ), ν(g)},
▶ ν(fg) = ν(f ) + ν(g), and

▶ ν(c) = 0 for all c ∈ C∗.

Definition. (Okounkov, Lazarsfeld–Mustaţă, Kaveh–Khovanskii) The
Newton–Okounkov body for (X , ν) is
∆(X , ν) := cone(im(ν)) ∩ ({1} × Rd).

Theorem. (Anderson, 2013) When ∆(X , ν) is a lattice polytope, we
have a degeneration of X to the normalization of the toric variety of
∆(X , ν).

When the tropicalization of X is well-behaved [Kaveh–Manon, 2016]
construct valuations ν such that ∆(X , ν) is a lattice polytope.
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Tropical geometry and Newton–Okounkov bodies

Choose a presentation C[x1, . . . , xn]/I for C[X ], I homogeneous.

Trop(I ) :={w ∈ Rn | inw (I ) contains no monomials}.

Trop(I ) is a fan in Rn with cones Cw = {x ∈ Rn | inx(I ) = inw (I )} for
w ∈ Rn.

A cone C of Trop(I ) is prime if inw (I ) is prime for some/all w ∈ C◦.

Theorem. (Kaveh-Manon, 2016) Let C be a prime cone of Trop(I ) and
{u1, . . . , ur} ⊂ C be maximally linearly independent. There is a valuation
νC of A such that its Newton-Okounkov body ∆(A, νC ) ⊂ Rd is the
convex hull of the columns of the matrix with rows u1, . . . , ur .
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Mutations of Newton-Okounkov bodies

Theorem. (Escobar–H, 2019) Let C1 and C2 be two prime cones of
Trop(I ) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, p2 : Rd → Rd−1 such that

∆(X , νC1)
p1−→ ∆C1∩C2

p2←− ∆(X , νC2)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijection ∆(X , νC1)→ ∆(X , νC2).
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natural projections p1, p2 : Rd → Rd−1 such that

∆(X , νC1)
p1−→ ∆C1∩C2

p2←− ∆(X , νC2)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijection ∆(X , νC1)→ ∆(X , νC2).

Remark 1. Ilten interprets this piecewise-linear bijection as a
generalization of the combinatorial mutations of
Akhtar-Coates-Galkin-Kasprzyk. (In the context of their study of mirror
symmetry for Fano manifolds)

Remark 2. In the case of the Grassmannian of 2-planes in Cm the
second bijection is connected to cluster mutations.
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Families of degenerations from mutations of polytopes

X ⇝ Trop(X )⇝ a collection of Newton–Okounkov polytopes and
piecewise-linear bijections between them.

... as suggested above, mutations of polytopes also appear in the theory
of cluster algebras/varieties, mirror symmetry, the study of Fano
manifolds/varieties....

“Million-dollar question”: is there a systematic theory that can unify
these??

6 / 17



Families of degenerations from mutations of polytopes

In [Escobar-H-Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by

▶ replacing the classical lattice M ∼= Zr with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and

▶ replacing the Laurent polynomial ring K[x±1 , · · · , x±r ], together with
its usual valuation with a more general K-algebra equipped with a
valuation.
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which are related by piecewise-linear bijections (“mutations”), and

▶ replacing the Laurent polynomial ring K[x±1 , · · · , x±r ], together with
its usual valuation with a more general K-algebra equipped with a
valuation.

By doing the above, we gain multiple benefits:

▶ We systematize and generalize the phenomenon in [Escobar–H].

▶ We exhibit a family {Xα} of degenerations of a single variety X ,
where each member Xα of the family has as its central fiber the
toric variety associated to a polytope which is mutation-related to
the others in the family.

▶ We develop a generalization of the classical theory of polytopes
together with a combinatorics-geometry dictionary.
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Polyptych lattices

A polyptych lattice of rank r isM = ({Mi}i∈I , {µij}i,j∈I ) such that

▶ Mi ≃ Zr .

▶ µij : Mi → Mj is a piecewise linear bijection.

▶ µii = id and µjk ◦ µij = µik .

Example. The trivial polyptych lattice of rank r isMr
◦ := ({Zr}, {id}).

Example. LetM2 = ({M1,M2}, {µ12}), where M1 ≃ M2 ≃ Z2 and
µ12(x , y) = (min{0, y} − x , y).

An element ofM is m = (mi )i∈I such that for all i ∈ I , mi ∈ Mi and for
all i , j ∈ I , µij(mi ) = mj .

Given S ⊆M, the i-th chart of S is the set Si := {s | ∃m ∈ S,mi = s}.
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Polyptych: “A sculpted or painted object composed of at least two, and
usually more than three, panels. Most polyptychs functioned as
altarpieces; the panels of some are hinged so that they may be opened
and closed.” (Oxford Reference)

Greek: “poly” = “many” , “ptukhe” = “fold”

Our collaborator Chris Manon likes to abbreviate this and call them
“p-lattices”. This has the advantage of linguistic suggestiveness:

▶ “p” for “polyptych”

▶ “p” for “piecewise (linear)”

▶ In particular, “polyptych lattice” abbreviates to “PL” which also,
very conveniently, (or, confusingly?) suggests “Piecewise Linear” (!)
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Suggestion from Lauren Williams (Mirror Symmetry Workshop, King’s
College London, June 2024):

▶ “p” for “pretentious” ?
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PL halfspaces
A point ofM is a collection p = {pi : Mi → Z | i ∈ I} such that
▶ ∀i , j ∈ I , pj ◦ µij = pii
▶ ∀i ∈ I and ∀m,m′ ∈ Mi , we have

pi (m) + pi (m
′) = min

j∈I
{pj(µij(m) + µij(m

′))}

where the + on the RHS denotes addition in the lattice Mj .
We denote by Sp(M) the collection of points ofM.

Example. Sp(M2) ∼= {(a, a′, b) ∈ Z3 | a+ a′ = min(0, b)}.

The PL-halfspace associated to p ∈ Sp(M) and a ∈ Z is
Hp,a := {m ∈M | p(m) ≥ a}.

Example. A PL halfspace inM2:

M1 M2
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PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL
polytope is integral if for all i ∈ I its chart in Mi is a lattice polytope.

Example. An integral PL polytope inM2:

M1 M2
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PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL
polytope is integral if for all i ∈ I its chart in Mi is a lattice polytope.

Example. A PL polytope that is not lattice:
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Compactifications via PL polytopes

1. Toric case.

Let P be a lattice polytope in Rn. The toric variety XP is a
compactification of the torus Spec(C[x±1

1 , . . . , x±1
r ]).

The homogeneous coordinate ring of the toric variety XP is given by
C[XP ] =

⊕∞
k=0 C[xm | m ∈ Zr ∩ kP].

We have a valuation ν : C[x±1
1 , . . . , x±1

r ]→ {PWL functions Zr → Z}
given by ν(

∑
cαx

α) := min
cα ̸=0
⟨α,−⟩.

The support function ψP : Zr → R of a polytope P is defined by
ψP := min{⟨m,−⟩ | m ∈ P}.

We have that C[XP ] =
⊕∞

k=0{f ∈ C[x±1
1 , . . . , x±1

n ] | ν(f ) ≥ ψkP}.
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Detropicalization of a polyptych lattice

Assume thatM is dualizable. Roughly, this means there is a p-lattice N
and a pair of bijections N : N → Sp(M) and M :M→ Sp(N ).

Let PN be the semialgebra generated by Sp(N ) with respect to the
operations ⊕ := min and ⊙ := +.

Definition. Given a domain A, a function ν : A → PN is a valuation if

▶ ν(f + g) ≥ ν(f )⊕ ν(g),
▶ ν(fg) = ν(f )⊙ ν(g), and
▶ ν(c) = 0 for all c ∈ C∗.

A detropicalization ofM is a domain A together with a valuation
ν : A → PN such that Sp(N ) ⊆ im(ν).
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Example. For the trivial p-lattice of rank r ,Mr
◦ := ({Zr}, {id}), recall

that Sp(Mr
◦) = Hom(Zr ,Z). The dual isMr

◦ and PMr
◦
is the set of

piecewise-linear concave functions on Zr .

The ring C[x±1
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▶ ν(fg) = ν(f )⊙ ν(g), and
▶ ν(c) = 0 for all c ∈ C∗.

A detropicalization ofM is a domain A together with a valuation
ν : A → PN such that Sp(N ) ⊆ im(ν).

Example. Let A = C[x1, x2, t±1]/⟨x1x2 − 1− t⟩. There exists a
valuation ν such that (A, ν) is a detropicalization ofM2.

Remark. For each d , r ∈ N we give a p-latticeMd,r together with
detropicalization (Ad,r , νd,r ) where
Ad,r = C[x1, . . . , xd , t±1

1 , . . . , t±1
r ]/⟨x1 · · · xd − t1 − · · · − tr ⟩.
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Compactifications via PL polytopes

2. PL case.

Let A be a detropicalization ofM with valuation ν and ∆ an integral PL
polytope.

Let N be the dual ofM with bijection M :M→ Sp(N ).

The support function ψ∆ : N → R of ∆ is defined by
ψ∆ := min{M(m) | m ∈ ∆ ∩M}.

Define the graded algebra A∆ :=
⊕∞

k=0{f ∈ A | ν(f ) ≥ ψk∆}.

Theorem. (Escobar–H–Manon) X∆ := Proj(A∆) is a compactification of
Spec(A). Moreover, for each i ∈ I , the chart image of ∆ in Mi is a
Newton–Okounkov body of X∆ and these polytopes are connected by the
PWL bijections µij .
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Geometric properties

Theorem. (Escobar–H–Manon) X∆ := Proj(A∆) is a compactification of
Spec(A). Moreover, for each i ∈ I , the chart image of ∆ in Mi is a
Newton–Okounkov body of X∆ and these polytopes are connected by the
PWL bijections µij .

Theorem. (Escobar–H–Manon) Suppose each chart image ∆i of ∆ is a
lattice polytope. There exists a toric degeneration π : Xi → C with
generic fiber isomorphic to X∆ and special fiber the toric variety
associated to ∆i .

Moreover,

▶ A∆ is finitely generated.

▶ If A is normal, then X∆ is also normal.

▶ X∆ is arithmetically Cohen-Macaullay.

▶ If A is a UFD, then X∆ has a finitely generated class group and a
finitely generated Cox ring.
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We give a family of rank-2, two-chart examples in
(Cook-Escobar-H-Manon), and also give lots of sample computations for
this family, e.g. the PL analogue of Gorenstein-Fano polytopes.

16 / 17



Thank you!
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