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Toric degenerations

Let P C RY be a d-dimensional polytope with vertices in Z¢ and let
PNZ={ag,...,a,}.

The toric variety Xp is the closure of the image of the map (C*)? — P”
given by x — (x@, ..., x%").
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Toric degenerations

Let P C RY be a d-dimensional polytope with vertices in Z¢ and let
PNZ={ag,...,a,}.

The toric variety Xp is the closure of the image of the map (C*)? — P”
given by x — (x@, ..., x%").

Question. Given a variety X C P”, is there a polytope P such that the
toric variety Xp approximates X7

Definition. A toric degeneration of a variety X C IP” is a flat family
m: X — C, where the general fiber is X and the special fiber is a toric
variety Xp.
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Newton—QOkounkov bodies

Let X be a projective variety of dimension d.

Equip Z9*! with a total order =. A function v : C[X]\ {0} — Z9*! is a
valuation if

> v(f +g) = min{u(f),v(g)},

» v(fg) =v(f) +v(g), and

» v(c) =0 for all c € C*.

Definition. (Okounkov, Lazarsfeld-Mustatd, Kaveh—Khovanskii) The
Newton—Okounkov body for (X, v) is
A(X,v):= cone(im(v)) N ({1} x R9).
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Newton—QOkounkov bodies

Let X be a projective variety of dimension d.

Equip Z9*! with a total order =. A function v : C[X]\ {0} — Z9*! is a
valuation if

> v(f +g) = min{u(f),v(g)},

» v(fg) =v(f) +v(g), and

» v(c) =0 for all c € C*.

Definition. (Okounkov, Lazarsfeld-Mustatd, Kaveh—Khovanskii) The
Newton—Okounkov body for (X, v) is
A(X,v):= cone(im(v)) N ({1} x R9).

Theorem. (Anderson, 2013) When A(X,v) is a lattice polytope, we
have a degeneration of X to the normalization of the toric variety of
A(X,v).

When the tropicalization of X is well-behaved [Kaveh—Manon, 2016]
construct valuations v such that A(X,v) is a lattice polytope.
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Tropical geometry and Newton—Okounkov bodies

Choose a presentation C[xy, ..., x,]/! for C[X], | homogeneous.

Trop(/):={w € R" | in,, (/) contains no monomials}.

Trop(/) is a fan in R” with cones C,, = {x € R" | iny (/) = iny, ()} for
w € R".

A cone C of Trop(/) is prime if in, (/) is prime for some/all w € C°.

Theorem. (Kaveh-Manon, 2016) Let C be a prime cone of Trop(/) and

{v1,...,u,} C C be maximally linearly independent. There is a valuation
vc of A such that its Newton-Okounkov body A(A,vc) C RY is the
convex hull of the columns of the matrix with rows uy, ..., u,.
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Mutations of Newton-Okounkov bodies

Theorem. (Escobar—H, 2019) Let C; and G, be two prime cones of
Trop(/) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, ps : RY — R91 such that

AX,vq) 25 Agne <2 A(X,ve,)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijection A(X,v¢,) = A(X,vg,).
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Mutations of Newton-Okounkov bodies

Theorem. (Escobar-H, 2019) Let C; and G, be two prime cones of
Trop(/) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, ps : RY — R9~1 such that

A(X,vq) 25 Agne ¢ A(X,ve,)
and the fibers are intervals of the same length (up to a global constant).
We obtain two piecewise-linear bijection A(X,v¢ ) = A(X,vg,).
Remark 1. llten interprets this piecewise-linear bijection as a
generalization of the combinatorial mutations of
Akhtar-Coates-Galkin-Kasprzyk. (In the context of their study of mirror
symmetry for Fano manifolds)
Remark 2. In the case of the Grassmannian of 2-planes in C™ the

second bijection is connected to cluster mutations.
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Families of degenerations from mutations of polytopes

X ~» Trop(X) ~~ a collection of Newton-Okounkov polytopes and
piecewise-linear bijections between them.

. as suggested above, mutations of polytopes also appear in the theory
of cluster algebras/varieties, mirror symmetry, the study of Fano

manifolds/varieties....

“Million-dollar question”: is there a systematic theory that can unify
these??
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Families of degenerations from mutations of polytopes

In [Escobar-H-Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by
» replacing the classical lattice M = Z" with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and
> replacing the Laurent polynomial ring K[xZ, - - -, xF], together with
its usual valuation with a more general K-algebra equipped with a
valuation.
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Families of degenerations from mutations of polytopes

In [Escobar-H-Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by

» replacing the classical lattice M =2 Z" with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and

» replacing the Laurent polynomial ring K[xli, .-+, xF], together with
its usual valuation with a more general K-algebra equipped with a
valuation.

By doing the above, we gain multiple benefits:
» \We systematize and generalize the phenomenon in [Escobar-H].

» We exhibit a family {X,} of degenerations of a single variety X,
where each member X, of the family has as its central fiber the
toric variety associated to a polytope which is mutation-related to
the others in the family.

» We develop a generalization of the classical theory of polytopes
together with a combinatorics-geometry dictionary.
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Polyptych lattices

A polyptych lattice of rank r is M = ({M;}ies, {pij}ijer) such that
> M, ~7".
» uij - M; — M; is a piecewise linear bijection.

> i =id and pk o i = ik
Example. The trivial polyptych lattice of rank r is M/ := ({Z"}, {id}).

Example. Let My = ({My, M>}, {p12}), where My ~ M, ~ 72 and
paz(x,y) = (min{0, y} — x, y).

An element of M is m = (m;);¢ such that for all i € I, m; € M; and for
all i,j el ,u,-j(m,-) = mj.

Given § C M, the j-th chart of S is the set S; := {s | Im € S, m; = s}.
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Polyptych: "A sculpted or painted object composed of at least two, and
usually more than three, panels. Most polyptychs functioned as
altarpieces; the panels of some are hinged so that they may be opened
and closed.” (Oxford Reference)

Greek: “poly” = "many" , “ptukhe” = "fold"

Our collaborator Chris Manon likes to abbreviate this and call them
“p-lattices”. This has the advantage of linguistic suggestiveness:

» “p" for “polyptych”
» “p" for “piecewise (linear)"

» In particular, “polyptych lattice” abbreviates to “PL" which also,
very conveniently, (or, confusingly?) suggests “Piecewise Linear” (!)
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Suggestion from Lauren Williams (Mirror Symmetry Workshop, King's
College London, June 2024):

» “p" for “pretentious” ?
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PL halfspaces

A point of M is a collection p = {p; : M; = Z | i € I} such that
> Vi, jel, pjopi= pi
» Vieland Vm,m' € M;, we have

pi(m) + pi(m') = min{p;(usi(m) + iz (m"))}

where the 4 on the RHS denotes addition in the lattice M;.
We denote by Sp(M) the collection of points of M.

Example. Sp(My) = {(a,a’,b) € Z3 | a+ a’ = min(0, b)}.
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PL halfspaces

A point of M is a collection p = {p; : M; = Z | i € I} such that
> Vi, jel, pjoui= pi
» Vieland Vm,m' € M;, we have

pi(m) + pi(m') = min{p;(usi(m) + iz (m"))}

where the 4 on the RHS denotes addition in the lattice M;.
We denote by Sp(M) the collection of points of M.

Example. Sp(My) = {(a,a’,b) € Z3 | a+ a’ = min(0, b)}.

The PL-halfspace associated to p € Sp(M) and a € Z is
Hp,a:={m e M| p(m) > a}.

Example. A PL halfspace in Mj:

M]_ MZ
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PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL
polytope is integral if for all i € | its chart in M; is a lattice polytope.

Example. An integral PL polytope in Mj:

My

L

M
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PL polytopes

An PL polytope is a bounded finite intersection of PL halfspaces. A PL
polytope is integral if for all / € [ its chart in M; is a lattice polytope.

Example. A PL polytope that is not lattice:
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Compactifications via PL polytopes

1. Toric case.

Let P be a lattice polytope in R". The toric variety Xp is a

compactification of the torus Spec(C[xi™, ..., x*1]).

The homogeneous coordinate ring of the toric variety Xp is given by
C[Xp] = By C[x™ | m € Z" N kP).
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Compactifications via PL polytopes

1. Toric case.

Let P be a lattice polytope in R". The toric variety Xp is a

compactification of the torus Spec(C[xi™, ..., x*1]).

The homogeneous coordinate ring of the toric variety Xp is given by
C[Xp] = By C[x™ | m € Z" N kP).

We have a valuation v : C[x{!, ..., x*1] — {PWL functions Z" — Z}
i b 2x®) := min{a, —).
given by I/(ZC x%) ca;To<a )

The support function yp : Z" — R of a polytope P is defined by
Yp :=min{(m,—) | m e P}.

We have that C[Xp] = @2 {f € Clxi™, ..., x5 | v(F) > Yup ).
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Detropicalization of a polyptych lattice

Assume that M is dualizable. Roughly, this means there is a p-lattice N/
and a pair of bijections 91 : AV — Sp(M) and 9 : M — Sp(N).

Let Py be the semialgebra generated by Sp(/N') with respect to the
operations @ := min and ® = +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> u(f+g)>v(f)@v(g),
» v(fg) =v(f) ®v(g), and
» v(c) =0 for all c € C*.

A detropicalization of M is a domain A together with a valuation
v : A — Py such that Sp(N) Cim(v).
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Detropicalization of a polyptych lattice

Assume that M is dualizable. Roughly, this means there is a p-lattice N/
and a pair of bijections ¢ : N" — Sp(M) and I : M — Sp(N).

Let Pyr be the semialgebra generated by Sp(/N') with respect to the
operations @ := min and ® := +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> u(f +g) > v(f) & v(g),
> v(fg) =v(f) ©v(g), and
» v(c) =0 for all c € C*.

A detropicalization of M is a domain A together with a valuation

v : A — Py such that Sp(N) C im(v).

Example. For the trivial p-lattice of rank r, M. := ({Z"}, {id}), recall
that Sp(M7) = Hom(Z",Z). The dual is M and Py is the set of
piecewise-linear concave functions on Z".

The ring (C[Xlil, ..., x*1] is a detropicalization of M/, with valuation

V(> cax®) = P (e, -).
ca #0
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Detropicalization of a polyptych lattice

Assume that M is dualizable. Roughly, this means there is a p-lattice N/
and a pair of bijections 91 : N' — Sp(M) and M : M — Sp(N).

Let Py be the semialgebra generated by Sp(/N') with respect to the
operations @ := min and ® = +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> v(f +g) = v(f) @ v(g)
> u(fg) = U(F) © v(g), and
» v(c) =0 forall c € C*.

A detropicalization of M is a domain A together with a valuation
v : A — Py such that Sp(N) Cim(v).

Example. Let A = C[x, %, t¥1]/(xax2 — 1 — t). There exists a
valuation v such that (A, v) is a detropicalization of M.

Remark. For each d,r € N we give a p-lattice My , together with
detropicalization (Ag,,, vq4,,) Where

1
.Ad’r :C[Xl,...7xd,tit ,...7tri1]/<X1~-'Xd—tl—"~—tr>.
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Compactifications via PL polytopes

2. PL case.

Let A be a detropicalization of M with valuation v and A an integral PL
polytope.

Let NV be the dual of M with bijection 9 : M — Sp(N).

The support function ¢a : N'— R of A is defined by
Ya = min{M(m) | me AN M}.

Define the graded algebra Aa := @,-o{f € A| v(f) > Ya}
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Compactifications via PL polytopes

2. PL case.

Let A be a detropicalization of M with valuation v and A an integral PL
polytope.

Let NV be the dual of M with bijection 9 : M — Sp(N).

The support function ¢a : N'— R of A is defined by
Ya = min{M(m) | me AN M}.

Define the graded algebra Aa := @,-o{f € A| v(f) > Ya}
Theorem. (Escobar-H-Manon) Xa := Proj(.Aa) is a compactification of
Spec(A). Moreover, for each i € I, the chart image of A in M; is a

Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.
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Geometric properties

Theorem. (Escobar—H-Manon) Xa := Proj(Aa) is a compactification of
Spec(.A). Moreover, for each i € I, the chart image of A in M; is a
Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.

Theorem. (Escobar—H-Manon) Suppose each chart image A; of A is a
lattice polytope. There exists a toric degeneration 7 : X; — C with
generic fiber isomorphic to Xa and special fiber the toric variety
associated to A;.
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Geometric properties

Theorem. (Escobar—H-Manon) Xa := Proj(Aa) is a compactification of
Spec(.A). Moreover, for each i € I, the chart image of A in M; is a
Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.

Theorem. (Escobar—H-Manon) Suppose each chart image A; of A is a
lattice polytope. There exists a toric degeneration 7 : X; — C with
generic fiber isomorphic to Xa and special fiber the toric variety
associated to A;.

Moreover,
» An is finitely generated.
» If A is normal, then Xa is also normal.

» Xa is arithmetically Cohen-Macaullay.

» If Ais a UFD, then X has a finitely generated class group and a
finitely generated Cox ring.
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We give a family of rank-2, two-chart examples in
(Cook-Escobar-H-Manon), and also give lots of sample computations for
this family, e.g. the PL analogue of Gorenstein-Fano polytopes.
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Thank you!



