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1. Gelfand-Cetlin system

• Let G = U(n). The Gelfand-Cetlin (or Gelfand-Zeitlin) system is a

collection of functions on a (co)adjoint orbit of U(n) (in other words a flag

manifold).

• Let U be a Hermitian n× n matrix, so that
√
−1U is an element of the

Lie algebra of U(n). The orbits of the adjoint action of G on the space of

Hermitian matrices are the collections of Hermitian matrices with fixed

eigenvalues λ1 ≥ · · · ≥ λn.

• The functions Fi,j (1 ≤ i ≤ n, 1 ≤ j ≤ n− i) are the eigenvalues of the

square (n− i)× (n− i) submatrix in the top left corner.

Guillemin and Sternberg showed that the above functions Fi,j Poisson

commute and their Hamiltonian vector fields are linearly independent and

span the tangent space to the flag manifold almost everywhere, but flag

manifolds are not toric manifolds.



2. Flag manifolds are not in general toric manifolds

It is known that the only flag manifolds that are toric varieties are products

of complex projective spaces.

This combines:

• Beilinson-Bernstein localization theorem

• Partial flag varieties are D-affine, in other words they have a deformation

quantization with a C
∗ action with respect to which they are affine. (Jesper

Funch Thomsen, 1997)

• The only projective toric varieties that are D-affine are products of

projective spaces. (N. Hemelsoet 2022)

However there are open dense subsets of flag manifolds which are

homeomorphic to (C∗)N (K. Kaveh 2017; M. Harada-K. Kaveh 2018)

Example: SU(3)/T is a flag manifold (where T is the maximal torus). The

Cox ring is not a polynomial ring so it is not a toric manifold See Y. Hu, S.

Keel, “Mori dream spaces and GIT” (2000) See also “The Cox ring of a

spherical embedding”, G. Gagliardi (2014)



3. Gelfand-Cetlin system

• The functions Fi,j satisfy the Gelfand-Cetlin pyramid:

λ1 ≥ F1,n−1 ≥ λ2 ≥ F1,n−2 ≥ λ3 ≥ F1,n−3 ≥ · · ·

and so on. Because the rank (n− 2) square matrix is a submatrix of the

rank n− 1 square matrix, we get

F1,n−1 ≥ F2,n−2 ≥ F1,n−2 ≥ · · ·

This provides the second row of the pyramid.

• The Gelfand-Cetlin polytope is the polytope described by the above

inequalities (where λ1, . . . , λn are fixed).

• This polytope is not the Delzant polytope associated to any toric

manifold, because at some vertices the number of edges is more than the

dimension of the polytope. (Jongbaek Song, private communication;

Presnova–Smirnov, 2023)

• See p. 4 of the following paper for a figure (Figure 1) displaying the

pyramid:



D. Bouloc, E. Miranda, N.T. Zung, Singular fibres of the Gelfand-Cetlin

system on u(n)∗, Phil. Trans. Roy. Soc. London A (2018)



4. Moduli spaces of flat connections

• It is not known how to classify similar examples. One that is known is the

moduli space of equivalence classes of flat SU(2) connections on an

orientable compact 2-manifold Σ, also called character varieties (LJ– J.

Weitsman 1992).

• In the language of flat connections and gauge transformations, the

symplectic form is (Atiyah-Bott 1983)

ω(a, b) =

∫

Σ

Trace(a ∧ b).

where a, b are elements in the tangent space to the space of all connections,

in other words Lie algebra valued 1-forms (think of these as matrices).

• Goldman 1984 section 1.4: the space is smooth if the representation of π

into G has finite stabilizer (under conjugation).

• In this situation, the dimension of the space is the dimension of G times

the absolute value of the Euler characteristic of the surface Σ.

Theorem (Goldman 1984 section 1.7): Suppose Σ has no boundary. The



2-form is a closed nondegenerate 2-form on the open subset of Hom(π,G)/G

consisting of points where this space is smooth.

• Goldman 1984 used Atiyah-Bott’s infinite-dimensional description of the

form to conclude ω was closed.

Karshon (1992) gave the first proof that ω is closed using only group

cohomology.

• For a surface Σ, the 2-form is closed only if Σ has no boundary

components. Otherwise the character variety is Poisson, and the symplectic

leaves are the subsets where the holonomy of the connections around each

boundary component is a constant. These spaces are called moduli spaces of

parabolic bundles.

• The Poisson bracket of these functions is as follows. (Goldman 1986)

These functions are obtained from a pants decomposition of the 2-manifold.

The number of boundary circles is half the dimension of the moduli space.

The functions are θj (j = 1, . . . , 3g − 3) where the holonomy of the

connection around the j-th boundary circle is conjugate to a diagonal



matrix with eigenvalues e±iθj (0 ≤ θj ≤ π. These satisfy inequalities

|θ1 − θ2| ≤ θ3 ≤ θ1 + θ2, θ1 + θ2 + θ3 ≤ 2π.

• These inequalities define a tetrahedron, inscribed in the cube of side

length π with vertices

(0, 0, 0), (π, π, 0), (π, 0, π), (0, π, π).

If θ1, θ2, θ3 correspond to the three boundary circles which form the

boundary of a trinion (pair of pants), then these variables must satisfy these

inequalities.

• The moment polytope for these circle actions is obtained by imposing

these inequalities for every trinion in the trinion decomposition.

• There are 3g − 3 boundary circles for any pants decomposition. Different

pants decompositions give different polyhedra, but the volume of all

polyhedra is the same. It is equal to the symplectic volume of the character

variety.

• These flows Poisson commute. So we have (3g − 3)dim(T ) Poisson



commuting flows. The dimension of the character variety is (2g − 2)dim(G).

The number of flows is half the dimension of the moduli space only if

dimG = 3dimT , in other words SU(2), SO(4), SL(2, R), SL(2, C).

• The flow associated to a curve C is

HolC(A) ∼= diag(eiθ, e−iθ)

(the diagonal matrix with these eigenvalues).

• Goldman (1986) uses TraceHolC(A), which leads to periodic flows (when

G is compact) but for which the period is not constant. So these flows do

not come from a Hamiltonian torus action.

• To recover a Hamiltonian torus action we must use θ instead of

TraceHolC(A).

For SU(2), the Hamiltonian flow of the function θ is only well defined when

the value of the holonomy around a curve C is not ±I . Thus these

functions are well defined on an open dense set. This suffices to determine

the symplectic volume of the moduli space and the image of the moment

map. The moment map is continuous but not differentiable at the values



described above.

This is because θ = cos−1Trace(HolCA)/2) and the function cos−1 is not

differentiable when cos(θ) = ±1. in other words

θ = cos−1 Trace(HolC(A)/2) = 0, π



5. Poisson structures

• Flag manifolds are orbits of the (co)adjoint action on the Lie algebra. The

Poisson bracket comes from the Kirillov-Kostant-Souriau form on the orbits.

• Character varieties:

The Poisson bracket of these functions is as follows. (Goldman 1986)

The Poisson structure is given by the 2-form described above.

• Suppose α, β are based loops in Σ, giving rise to elements [α], [β] in π1(Σ).

WLOG these based loops intersect transversely.

• Let α ∩ β denote the set of intersections.

• Let ǫ(π, α, β) be the intersection number at p ∈ α ∩ β.

• Let ρ : π → G be a representation.

• Then define fα(ρ) = f(ρ(α)), where f : G → C.



• Let A ∈ G and let f : G → R be a map which is invariant under

conjugation. Define F (A) (an element of the Lie algebra of G) by

< F (A), V >=
d

dt
|t=0f

(

(exp tV )A
)

where < ·, · > is an Ad -invariant inner product on the Lie algebra of G and

V is an element of the Lie algebra of G.

(Goldman, 1986)

• Here for G = U(n) and G = SU(n) and f(A) = Trace(A), it turns out

that F (A) = 1

2
(A− A−1). It can be shown that this is an element of the Lie

algebra of G.

• When ρ is a homomorphism from π to G, the Poisson bracket is defined by

{fα(ρ), gβ(ρ)} =
∑

p

ǫ(p, α, β) < F (ρ(α)), G(ρ(β)) > .

• Here we sum over points p where α and β intersect.



6. Quantization

• These Gelfand-Cetlin-like systems have been quantized using a real

polarization.

• Flag manifolds: Guillemin-Sternberg quantized flag manifolds using a real

polarization by selecting integer values of the variables Fi,j

(Bohr-Sommerfeld quantization).

• Hamilton [Ham] studied a quantization using a real polarization, which

did not include those Bohr-Sommerfeld points which were singular fibers in

the foliation of the symplectic manifold by Lagrangian submanifolds. Both

Guillemin-Sternberg and J-Weitsman included some singular

Bohr-Sommerfeld fibers.

• Guillemin and Sternberg show that the number of such integer values (the

number of entries in the Gelfand-Cetlin pyramid) is equal to the dimension

of the quantization of the flag manifold using a Kähler polarization

(Bott-Borel-Weil theorem). Their argument proceeds using a theorem of

Hermann Weyl about restrictions of representations of U(k) to U(k − 1).

• The Hamiltonian flow of the Fi,j is not well defined if any eigenvalues of



square submatrices are equal, The reason is that the function that sends a

matrix to its eigenvalues is not differentiable when any eigenvalues are equal.

Moduli spaces of flat connections: LJ- J. Weitsman quantized the moduli

space by selecting integer values of the variables θj provided these variables

lie within the moment polytope. This quantization leads to the Verlinde

formula, the known formula for quantization of this space (Beauville-Laszlo,

Faltings, Kumar, Tsuchiya-Ueno-Yamada, Zagier).

• J. Uren (2011) wrote his PhD thesis under my supervision on the subject

of the toric manifolds whose Gelfand-Cetlin polytope would coincide with

the moment polytope for tbe Hamiltonian torus actions on character

varieties studied by J-Weitsman . He found that in most cases these toric

varieties are singular. For example many of these polytopes are not Delzant

polytopes.

• Uren found for example that the polytope associated to a genus 2 surface

with a pants decomposition consisting of two one-holed tori is a square

pyramid. This has 4 edges coming from the apex of the pyramid, so it is not

a Delzant polytope.



• By contrast, the polytope associated to a genus 2 wurface with the other

pants decomposition for genus 2 is a tetrahedron. This is the moment

polytope of complex projective space.

• For SU(2), the Hamiltonian flow of the function θ is only well defined

when the value of the holonomy around a curve C is not ±I . Thus these

functions are well defined on an open dense set. This suffices to determine

the symplectic volume of the moduli space and the image of the moment

map. The moment map is continuous but not differentiable at the values

described above.

• We must include integer values on the boundary of the mmoment

polytope, where the Hamiltonian flows are not necessarily well defined.

• The same is true for Guillemin-Sternberg’s construction (they also include

boundary values of the moment polytope).

• The Hamiltonian vector fields of these functions are undefined only when

the group element is in more than one maximal torus (in other words the

group element corresponds to a matrix with some repeated eigenvalues). In

this situation it is impossible to define the Hamiltonian vector field. This



occurs on a subset of measure 0.

For SU(2) this happens when any of the matrices take the value I or −I

(where I is the identity matrix).



• Goldman instead uses functions fC(A) = TraceHolC(A). These functions

are defined everywhere, and their Hamiltonian flows are periodic, but the

period is not constant. It depends on the conjugacy class of HolC(A).

• J. Weitsman and P. Crooks (J. Geom. Phys. 2023) studied the

quantization of the cotangent bundle of U(n) using two distinct real

polarizations. The quantization of the first led to the square integrable

functions. The quantization on the other led to the direct sum of the

endomorphisms of all irreducible representations of U(n). The Peter-Weyl

theorem identifies these two quantizations, giving another instance of

independence of polarization.

• Lane (Transformation Groups, 2018) describes a generalization of

Gelfand-Cetlin systems to groups other than U(n) and systems other than

coadjoint orbits.
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