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We have recently studied the equivariant topology of Grassmann
manifolds Gn,2 for the canonical action of the compact torus T n.

We constructed, by topological methods, a model Un = ∆n,2 ×Fn for
Gn,2/T

n, where Fn is a compact smooth manifold, together with
continuous projection Gn : Un → Gn,2/T

n.

The projection Gn is a diffeomorphism between dense open subsets in
Un and Gn,2/T

n and it preserves combinatorial structure of Un and
Gn,2/T

n.
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We proved that Fn is diffeomorphic to the well known Deligne -
Mumford compactification M0,n for M0,n by stable genus 0 curves
with n-marked distinct points.

This theory has been enriched by Hassett by introducing the notion of
stable curves of genus g with weighted marked point and their moduli
spaces.

We present our results establishing relations between equivariant
topology of Grassmann manifolds and moduli spaces of weighted
stable genus 0 curves.
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Moduli spaces M0,n

Example

For n = 3 any (CP1, s1, s2, s3) ∼= (CP1, 0, 1,∞), that is M0,3 is a
point.

For n = 4 any (CP1, s1, s2, s3, s4) ∼= (CP1, 0, 1,∞, t), where
t ̸= 0, 1,∞. Thus, M0,4 = CP1 \ {0, 1,∞}.

Generally (CP1, s1, . . . , sn) ∼= (CP1, 0, 1,∞, t1, . . . , tn−3), that is

M0,n = {(t1, . . . , tn−3) ∈ (CP1)n−3|ti ̸= 0, 1,∞, ti ̸= tj}

M0,n is not compact for n ≥ 4.

Svjetlana Terzić University of Montenegro based on joint work with Victor M. Buchstaber ( Workshop on Toric Topology Fields Institute August 19-23, 2024)Moduli spaces of weighted pointed stable curves and Grassmannians Gn,2 4 / 37



Compactification M0,n for M0,n

Problem of ”good” compactification of M0,n: it should be itself a moduli
space parametrazing natural generalization of the object of M0,n

Deligne-Mumford (”69) equivalent to Grotendieck-Knudsen
compactification (’72, ’83) is M0,n. It is a smooth manifold.

Stability condition for (C = CP1, s1, . . . , sn) requires:

KC +
n∑

i=1

si is an ample divisor, where KC it the canonical class of C .

Example: M0,4 = CP1, M0,5 - del Pezzo surface of degree 5.
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Moduli space M0,A of A-weighted stable curves

A curve (C = CP1,S = {s1, . . . , sn}) is said to be A-weighted stable by
Hassett (’03) if:

1 It is given a function A : S → Q such that 0 < A(i) ≤ 1.

2 KC +
n∑

i=1
A(i)si is an ample divisor,

3
∑

i∈I A(i) ≤ 1 for I ⊂ S such that si pairwise coincide for i ∈ I .

It follows:∑
i A(i) > 2; M0,A = M0,n for A = (1, . . . , 1)

Proved by Hassett:

M0,A is a smooth connected Deligne-Mumford stack proper over Z.
.
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Reduction and forgetting morphisms

Theorem (Hassett ’03)

Fix g and n.

Let A = (a1, . . . , an) and B = (b1, . . . , bn) be such that bi ≤ ai for
i = 1, . . . n. There exists birational reduction morphism

ρB,A : M0,A → M0,B.

Let A = (a1, . . . , an) and A′
= {ai1 , . . . , air } ⊂ A such that

ai1 + . . .+ air > 2. There exists natural forgetting morphism

ΦA,A′ : M0,A → M0,A′ .

Let (C , s1, . . . sn) ∈ M0,A. The points ρB,A(C , s1, . . . , sn) and
ΦA,A′ (C , s1, . . . , sn) are obtained by successively collapsing
components of C along which KC + b1s1 + . . .+ bnsn, that is
KC + ai1si1 + . . .+ air sir fails to be ample.
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Domain of admissible weight data D0,n

D0,n = {(a1, . . . , an) ∈ Rn|0 < aj ≤ 1, a1 + . . .+ an > 2}.

The coarse chamber decomposition {Wc} of D0,n is defined by the lattice
of hyperplane arrangement

W =
{
wS :

∑
j∈S

aj = 1|S ⊂ {1, . . . , n}, 2 < |S | < n − 2
}

intersected with D0,n. The boundary ∇D0,n of D0,n is defined by

∇D0,n = {(t1, . . . , tn) ∈ Rn|0 < ti < 1, t1 + . . .+ tn = 2}.

Note:

∇D0,n =
◦
∆n,2
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Relation to Geometric Invariant Theory (GIT) quotients

Consider (CP1)n with diagonal action of PGL2(C);
Let Li = O(−1) be a canonical line bundle on i-th factor CP1 and
L = (t1, . . . , tn) ∈ Qn, then O(L) = ⊗n

i=1L
ti
i is an ample line bundle

and it defines a fractional linearisation of this action.

We assume it is renormalised such that t1 + . . .+ tn = 2.

The (semi) stability condition for a point (x1, . . . , xn) ∈ (CP1)n can
be formulated by: for any {i1, . . . , ir} ⊂ {1, . . . , n}, xi1 , . . . , xir may
coincide only when ti1 + . . .+ tir (≤) < 1

O(L) is typical when all semistable point are stable and it is atypical
otherwise.

Let G(O) be the GIT-quotient of (CP1)n defined by linearisation O of
PGL2(C)-action.
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Theorem (Hassett ’03)

For a typical linearisation O(L),L ∈ ∇D0,n there exists an open
neighborhood U of L such that U ∩ D0,n is contained in an open chamber
of D0,n. For any A ∈ U ∩ D0,n, there is a natural isomorphism

M0,A
∼=→ G(O).

Theorem (Hassett ’03)

For an atypical linearisation O(L),L ∈ ∇D0,n, suppose that L is in the
closure of the chamber associated with A. There exists a natural
birational morphism

ρ : M0,A → G(O).
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Losev-Manin spaces L0,S

The spaces L0,S are defined (Losev & Manin (’00)) as the moduli spaces of

stable curves of genus 0 endowed with a family of painted by black or
white (≥ 2) points labeled by S ,

all white points are pairwise distinct and distinct from black ones,
while black points are without restrictions.

Let S = W ∪ B and A a weight data on S :

as = 1 for all s ∈ W , and
∑
t∈B

at ≤ 1.

Theorem

L0,S = M0,A, (Manin, ’04)

M0,A does not depend on (aik+1
, . . . , ain) such that

0 < aij < 1 and
∑n

j=k+1 aij ≤ 1, where k = |W |, (B & T ,’24)
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The structure of the model Un

T n action on Gn,2 extends to the canonical (C∗)n-action.

µ : Gn,2 → ∆n,2 ⊂ Rn be the standard moment map

µ(L) =
1∑

I |P I (L)|2
∑
I

|P I (L)|ΛI ,

ΛI ∈ Zn, ΛI (i) = 1 iff i ∈ I otherwise it is zero.
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Strata
Strata {Wσ} on Gn,2: non-empty sets of the form

Wσ = {L ∈ Gn,2|P I (L) ̸= 0 iff I ∈ σ}.

where σ ⊂ {I ⊂ {1, . . . , n} : |I | = 2} - admissible set.

Gn,2 = ∪Wσ -disjoint union, Wσ is (C∗)n-invariant

Proposition (B & T, ’19)

µ(Wσ) =
◦
Pσ, where Pσ = convhull(ΛI , I ∈ σ)

Pσ is called an admissible polytope.

Theorem (B& T, ’19)

Fσ = Wσ/(C∗)n is an algebraic variety and

Wσ/T
n ∼=

◦
Pσ ×Fσ.
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Main stratum

The main stratum

Wn = {L ∈ Gn,2|P I (L) ̸= 0 for any I ⊂ {1, . . . , n}, |I | = 2}.

It is an open, dense set in Gn,2 and there is a homeomorphism:

Wn/T
n ∼=

◦
∆n,2 ×Fn − open, dense in Gn,2/T

n,

Fn = Wn/(C∗)n = {((cij : c
′
ij)) ∈ (CP1

A)
N |cijc

′
ikcjk = c

′
ijcikc

′
jk},

N =
(n−2

2

)
, 3 ≤ i < j ≤ n, CP1

A = CP1 \ A,
A = {(1 : 0), (0 : 1), (1 : 1)}.
In what follows:

We construct the compactification Un for Wn/T
n which is a model for

Gn,2/T
n and describe its outgrows.
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Chamber decomposition of ∆n,2

Chambers Cω, ω ⊂ {σ|σ admissible set} are given by

Cω =
⋂
σ∈ω

◦
Pσ ̸= ∅ and Cω∩

◦
Pσ= ∅ for σ ̸∈ ω.

µ̂ : Gn,2/T
n → ∆n,2 - induced by the moment map

Ĉω = µ̂−1(Cω) ⊂ Gn,2/T
n.

Proposition (B & T, ’22)

hω : Cω × Fω ∼= Ĉω, µ̂ ◦ hω = pr1

where

Fω = ∪σ∈ωFσ - disjoint union, Fn ⊂ Fω,

Fω is a compact space - a compactification of Fn.

Gn,2/T
n = ∪ωĈω = ∪ωCω × Fω
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Universal space of parameters Fn

It is a compactification Fn for Fn such that:

there exists the projection Gn : ∆n,2 ×Fn → Gn,2/T
n.

G−1
n (Wσ/T

n) ∼=
◦
Pσ ×F̃σ for some F̃σ ⊂ Fn, where F̃σ is called a

virtual space of parameters for Wσ,

there exists the projection pσ : F̃σ → Fσ such that

◦
Pσ ×F̃σ

Gn→ Wσ/T
σ hσ→

◦
Pσ ×Fσ

coincides with
◦
Pσ ×F̃σ

(Id ,pσ)→
◦
Pσ ×Fσ.
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Wonderful compactification - application to Gn,2

Note:

The natural compactification F̄n of Fn in (CP1)N given by
cijc

′
ikcjk = c

′
ijcikc

′
jk , which is a smooth algebraic variety,

does not satisfy our conditions on Fn.

De Concini & Processi (’95), Fulton & MacPherson (’94) and Li (’09)
introduced the notion of wonderful compactification of a smooth
algebraic variety generated by a building set of its smooth subvarieties.

Theorem (B & T, ’23)

There exists a building set Gn in F̄n such that the smooth, compact
manifold Fn obtained as the wonderful compactification of F̄n generated
by Gn is the universal space of parameters for Gn,2.
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Virtual spaces of parameters

Fn = ∪σF̃σ, F̃n = Fn,

there exists a projection pσ : F̃σ → Fσ for any σ,

Theorem (B & T, ’22)

For any Cω ⊂
◦
∆n,2 it holds ⋃

σ∈ω
F̃σ = Fn.

This union is disjoint, which implies that it is defined the projection

pω : Fn → Fω by pω(y) = pσ(y), y ∈ F̃σ.

The proof of the theorem uses that Fω = ∪σ∈ωFσ - disjoint union.
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Model for Gn,2/T
n

It is (Un = ∆n,2 ×Fn,Gn), where Gn : Un → Gn,2/T
n = ∪Ĉω is given by

Gn(x , y) = hω(x , pω(y)) for x ∈ Cω.

On ∂∆n,2 ×Fn the projection Gn is defined successively using the
following:

µ̂−1(∂∆n,2) = (∪n
q=1Gn−1,2/T

n−1(q)) ∪ (∪n
q=1∆

n−2(q))

Over ∆n−2(q) contracts into a point.

Fn−1,q
∼= Fn−1 is universal space of parameters for Gn−1,2/T

n−1(q).

Proposition (B & T, ’23)

The space Fn−1,q is the image of the projection rq : Fn → Fn−1 defined
by forgetting the coordinates indexed by q:

Fn−1,q = Fn|(cij :c ′ij ),i ,j ̸=q,
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Summary

The structural data for the model (Un,Gn) are:

Fn - universal space of parameters,

F̃σ - virtual spaces of parameters,

Fσ and Fω - spaces of parameters of strata and over chambers

pσ : F̃σ → Fσ, pω : Fn → Fω, rq : Fn → Fn−1,q - projections

We present the realization of this model in terms of the moduli spaces of
weighted curves and morphisms between them.
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Spaces of parameters as moduli spaces of weighted curves

We prove:

Proposition

Fσ ∼= M0,m, 3 ≤ m ≤ n − 1

Theorem (B & T, ’23)

Fn is diffeomorphic to M0,n = M0,A0 ,

where A0 = (1, . . . , 1).
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From the results of D. Mumford on categorical quotients and F. Kirwan on
GIT-quotients it follows:

Proposition

Fω ∼= G(O),

where O = O(L), for L = (t1, . . . , tn) ∈ Cω

Corollary (B & T, ’24)

If dimCω = n − 1 there exists A ∈ D0,n such that Fω ∼= M0,A

If dimCω < n − 1 there exists A ∈ D0,n and birational morphism
M0,A → Fω.
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Proposition (B & T, ’24)

Any F̃σ is homeomorphic to Fs ×Fl × F̂q, where:

F̂q ∼= Fm, m ≤ q or

F̂q is a wonderful compactification of
{(cij : c

′
ij) ∈ (CP1)Nq |cijc

′
ilcjl = c

′
ijcilc

′
jl , cij , c

′
ij ̸= 0} for Nq =

(q−2
2

)
,

with the building set induced from Gn,

3 ≤ p, q, l ≤ n − 2 and p + q + l = n + 4.
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Let

Cn,2 be the family of chambers in
◦
∆n,2,

CH be the family of chambers of Wc in D0,n.

Lemma

There exists injective map ξ : Cn,2 → CH defined by

ξ(Cω) = Dω, Cω ⊂ Dω,

where Dω is a such of smallest dimension.
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Theorem (B & T, ’24)

The projection rq : Fn → Fn−1,q and forgetting map
ΦA,A′ : M0,A → M0,A′ coincide,

where A = (1, . . . , 1) and A′
= πq(A) - forgetting q-th coordinate.

Theorem (B & T, ’24)

The projection pω : Fn → Fω, Cω ⊂
◦
∆n,2, dimCω = n − 1 and reduction

map ρA0,B : M0,A0 → M0,B coincide, where A0 = (1, . . . , 1) and
B = (b1, . . . , bn) ∈ Dω, where Dω = ξ(Cω).

Svjetlana Terzić University of Montenegro based on joint work with Victor M. Buchstaber ( Workshop on Toric Topology Fields Institute August 19-23, 2024)Moduli spaces of weighted pointed stable curves and Grassmannians Gn,2 25 / 37



Losev-Manin spaces and spaces of parameters

L0,n,k ∼= M0,A for A ∈ D0,n,k - a chamber in D0,n defined by

xi + xl > 1, 1 ≤ i ≤ k , 1 ≤ 1 ≤ n, l ̸= i , xk+1 + . . .+ xn < 1.

Lemma

The chamber D0,n,k is not in the image of the map ξ : Cn,2 → CH.

We prove:

Proposition

There exists 0 < b1, . . . , bk < 1 such that:

B = (b1, . . . , bk , ak+1, . . . , an) ∈ D0,n,

for Dω such that B ∈ Dω there exists Cω ⊂ {xk+1 + . . .+ xn < 1},
dimCω = n − 1 such that Dω = ξ(Cω).

M0,B ∼= Fω
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Then reduction ρA,B theorem gives:

Corollary

There exists Cω ⊂ {xk+1 + . . .+ xn ≤ 1}, dimCω = n − 1 and birational
morphism L0,n,k → Fω.

This can be generalized :

Theorem (B& T’, 24)

For any Cω ⊂
◦
∆n,2 such that

dimCω = n − 1 and Cω ⊂ {xk+1 + . . .+ xn ≤ 1} there exists a
Losev-Manin space L0,n,k and a birational morphism L0,n,k → Fω.

dimCω ≤ n − 2 there exists a Losev-Manin space L0,n,k and a
birational morphism L0,n,k → Fω.
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Losev-Manin spaces and wonderful compactification

There exist:

natural blown-down birational morphism Fn → F n,

natural reduction birational morphism Fn → L0,n,2.

Theorem (B & T, 24)

The divisors for these morphisms coincide, that is

L0,n,2 is isomorphic to F̄n ⊂ (CP1)N ,N =

(
n − 2

2

)
.
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Demonstration n = 5

1 ▶ Let A = (1, 1, 5
18 ,

5
18 ,

5
18 ), A ∈ D0,5,2 ⊂ D0,5, M0,A = L̄0,5,2 ∼= F̄5

D0,5,2 : t1 + ti > 1, t2 + ti > 1, i ̸= 1, 2, t3 + t4 + t5 < 1.

2 ▶ Let O = ( 36 ,
4
6 ,

5
18 ,

5
18 ,

5
18 ), O ∈

◦
∆5,2, it is typical linearisation,

▶ O ∈ Cω ⊂
◦
∆5,2 : t1 + t2 > 1, and ti + tj < 1 for others.

▶ Fω
∼= G(O) ∼= M0,B for B ∈ U(O) ∩ D0,5

It holds:

Lemma

Fω ∼= F̄5 ⊂ (CP1)3.

Corollary

L0,5,2 is contained in the orbit space G5,2/T
5.
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Toric varieties and spaces of weighted genus 0 curves

Recall (Manin (’04), Kapranov (’93), Gelfand and Serganova (’87)):

L0,n,2 is a smooth, projective toric variety X (Pn−3
e ) over

the permutahedron Pn−3
e - permutohedral variety

L0,n,2 can be obtained as the closure of a principal (C∗)n−3-orbit
in Fl(n − 2) - complete complex flag manifolds.

Corollary

X (Pn−3
e ) can be mapped by birational morphism to a variety in the orbit

space Gn,2/T
n, n ≥ 6.
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Graph associahedra toric varieties do not much intersect with Hassett
spaces:

Theorem (Da Rosa, Jensen, Ranganathan (’16))

A toric variety X (PΓ) is isomorphic to a moduli space of stable genus 0
curves if and only if Γ is an iterated cone over a discrete set.

Corollary

The graph associahedron toric variety for a graph Γ = Conen−k−2(∪k
i=1vi )

on (n − 2)-vertices, can be mapped by birational morphism to a variety in
Gn,2/T

n.
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Gn,2/T
n as universal object for {M0,A}

The reduction morphisms ρA0,A give:

Lemma

For a fixed n all moduli spaces M0,A, |A| = n, are birationally equivalent.

Note: There are no birational morphisms between them in general.

Lemma

For a fixed n and any 2 ≤ k1 < k2 ≤ n − 2 there exists a birational
morphism L0,n,k2 → L0,n,k1 .
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The existence of birational morphisms L0,n,k → Fω, for Cω ⊂
◦
∆n,2 implies:

Proposition

For a fixed n, all spaces of parameters Fω of the chambers Cω ⊂
◦
∆n,2 are

birationally equivalent.

Note: There are no birational morphisms between them in general.

Altogether:

Theorem (B& T, ’24)

For any moduli space M0,A there exists a birational morphism to Fω for

some chamber Cω ⊂
◦
∆n,2.
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Geometric complexity of a torus action

The cases of effective actions of T k on M2n with a moment
µ : M2n → Pk and the induced moment map µ̂ : M2n/T k → Pk

one can divide as follows:

1 k = n and µ̂−1(x) is a point for x ∈ Pk

Ex: toric and quasitoric manifolds

2 k = n − 1 and µ̂−1(x) ∼= µ̂−1(y) for any x , y ∈
◦
Pk ,

Ex: T 4-action on G4,2, T
3-action on F3 = U(3)/T 3, Hamiltonian

T n−1-action on a symplectic manifold M2n

3 k ≤ n − 2 and there are x , y ∈
◦
Pk such that µ−1(x) ̸∼= µ−1(x),

Ex: T n action on Gn,2, n ≥ 5
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Problem: Classify the spaces µ̂−1(x), x ∈
◦
Pk up to homeomorphism or

birational equivalence.

According to our results, it is for Grassmannians Gn,2 equivalent to:

Problem: Formulate classification criterion for Fω in terms of Hassett and
Losev-Manin theory.
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For (C∗)k -action on M2m, k ≤ m, the complexity is defined by
d = m − k .

For M2m = Gn,2, m = 2(n − 2) with the canonical (C∗)n - action
d = n − 1 and

Fω = ∪Wσ/(C∗)n, dim∪Wσ = 2(n − 2).

Our research is related to developing toric topology of positive complexity.
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