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Moment-angle complex

K : a simplicial complex on [m] = {1, . . . ,m}

We define the polyhedral product (X ,Y )K of K with respect to a pair (X ,Y ) of
topological spaces as follows:

(X ,Y )K :=
⋃
σ∈K

{(x1, . . . , xm) ∈ Xm | xi ∈ Y when i /∈ σ} .

ZK := (D2,S1)K the moment-angle complex of K

RZK := (D1,S0)K the real moment-angle complex of K

T 1 = S1 ↷ (D2,S1) ⇝ Tm = (S1)m ↷ ZK

Z2 ↷ (D1,S0) ⇝ (Z2)
m ↷ RZK
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Buchstaber Number

Consider H r ⊂ Tm such that H r ↷ ZK freely.

s(K ) := max(r : ∃T r freely
↷ ZK ) the Buchstaber number of K

Similarly,

sR(K ) := max(r : ∃Zr
2

freely
↷ RZK ) the real Buchstaber number of K

In general, s(K ) ̸= sR(K ) ; for instance, an r -skeleton of ∆n. (Ayzenberg, 2011)
However, there is no known such example in the class of PL spheres yet.
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Inequality on (real) Buchstaber numbers

K : a PL (n − 1)-sphere on [m]

Theorem (Erokhovets, 2014)

1 ≤ s(K ) ≤ sR(K ) ≤ m − n

We are especially interested in the maximal case : s(K ) = sR(K ) = m − n.

Why a PL sphere and maximal? This covers many important classes of
toric spaces such as toric manifolds, quasitoric manifolds, . . . .
(Davis-Januskiewicz, 1991, Buchstaber-Panov, 2002,. . . .)
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Example: Hopf fibration

K = ∂∆n on [n + 1] (m = n + 1)

ZK = (D2,S1)K

=
⋃

σ ̸=[n+1]

{
(x1, . . . , xn+1) ∈ (D2)n+1 | xi ∈ S1 when i /∈ σ

}
= (D2 × · · · × D2 × S1) ∪ · · · ∪ (S1 × D2 × · · · × D2)

= ∂(D2)n+1 = S2n+1

There is the canonical free S1 action on S2n+1; s(K ) = 1 = m − n is maximal.

We have the Hopf fibration CPn = S2n+1/S1, while CPn admits a well-behaved
T n-action whose orbit space is ∆n.
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Characteristic map

K : a PL (n − 1)-sphere on [m]

A characteristic map over K is a map λC : [m] −→ Zn such that λC(σ) gives a
part of a basis of Zn for each face σ of K .

[ 1

1
0

] [ 2

0
1

]
[ 3

1
0

]
[ 4

2
1

]
[ 5

3
1

] [ 1 2 3 4 5

1 0 1 2 3
0 1 0 1 1

]

Toric colorability

K is toric colorable := ∃λC over K ⇔ s(K ) = m − n
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Mod 2 characteristic map

A mod 2 characteristic map over K is a map λR : [m] −→ Zn
2 such that λR(σ)

gives a part of a basis of Zn
2 for each face σ of K .
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Zn
2-colorability

K is Zn
2-colorable := ∃λR over K ⇔ sR(K ) = m − n
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Wedge operation

The wedge of K at v is

wedv (K ) := (I ∗ LkK (v)) ∪ (∂I ∗ K\{v}).

Simplicial complexes which are not wedges are called seeds.

1 2

3

4

5

K

11 2

3

4

5

12

wed1(K)

Recall the K (J)-operation (Bahri-Benderski-Cohen-Gitler, 2010); for
J = (j1, . . . , jm) ∈ Zm

>0, K (J) is obtained after performing ji − 1 wedges at the
vertex i for i = 1, . . . ,m.

Remark

Any simplicial complex can always be represented as K (J) with K being a seed.
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Wedged simplicial complex

PicK := m − n the Picard number of K

Remark

PicK = PicK (J) = m − n

Remark

(1) K is a PL sphere if and only if so is K (J).

(2) K is star-shaped if and only if so is K (J).

(3) K is polytopal if and only if so is K (J).

Theorem (Ewald, 1986, BBCG, 2010)

K admits a (mod 2) characteristic map if and only if so does K (J).
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Toric colorable seeds with Picard number ≤ 3

Note: The wedge operation preserves

the Picard number,

the polytopality (or star-shapedness), and

the toric colorability.

m − n = 1 =⇒ K = ∂(∆n) = ∂(I 1)(J)

m − n = 2 =⇒ K = ∂(∆n1 ×∆n2) = ∂(I 2)(J)

If K is toric colorable, then

m − n = 3 =⇒ K = ∂(I 3)(J), ∂P5(J), or ∂C
4
7 (J).

For each PicK ≤ 3, observe that there are a few toric colorable seeds.
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Challenging Picard number 4

Theorem (Choi-Park, 2017)

Let K be a toric colorable seed with m − n ≥ 3. Then,

m ≤ 2m−n − 1.

Corollary

For fixed m − n, there are finitely many toric colorable seeds.

Theorem (Choi-Jang, arXiv:2407.12400)

The above inequality is tight.

For m − n = 4, all we need to do is list up all PL spheres for n ≤ 11 (finite!),
and check if they are toric colorable.
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Picard number 4

Theorem (Choi-Jang-Vallée, 2024)

The numbers of toric colorable seeds up to m − n ≤ 4 are as follows.

p\n 1 2 3 4 5 6 7 8 9 10 11 > 11 total

1 1 1
2 1 1
3 1 1 1 3
4 1 4 21 142 733 1190 776 243 39 4 3153

The list and codes can be found in the following repository:

https://github.com/MVallee1998/GPU handle
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Application

Theorem (Choi-Park, 2016)

Any characteristic map λ over wedv (K ) is constructed by two characteristic
maps λ1 and λ2 over K. In this case, denoted by

λ = λ1 ∧v λ2.

If one knows every (real or complex) toric spaces over K , then so over K (J).
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Toric wedge induction

X : a set of (real or complex) toric spaces (L, λ) with the following;

(1) L is obtained by a sequence of wedge operations from K ,

(2) (L, λ1), (L, λ2) ∈ X with λ = λ1 ∧v λ2 if (wedv (L), λ) ∈ X .

P: a statement on X .

Theorem (Toric wedge induction)

Suppose that the following holds:
Basis step

P(K , λ) holds for any (K , λ) ∈ X .

Inductive step

P(L, λ1) and P(L, λ2) hold ⇒ (wedv (L), λ1 ∧v λ2) holds

Then P holds on X .
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Applications

Toric wedge induction was used for:

proving the projectivity of toric manifold with Picard number 3 (originally
proved by Kleinschmidt-Sturmfels, 1991, and reproved by Choi-Park, 2016)

proving the projectivity of toric manifold over ∂Pk(J) (Choi-Park, 2017)

answering the question of Chen-Fu-Hwang 2014 (Choi-Jang-Vallée, 2024)

. . .
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Application : Lifting Problem

Recall that there is no known example that s(K ) ̸= sR(K ) for a PL sphere K .

A stronger question, the lifting problem, was proposed by Zhi Lü at the Osaka
toric topology conference in 2011.

Lifting problem

Let K be a polytopal simplicial complex.
Is every small cover M over K the fixed points of conjugation on some
quasitoric manifold?
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Application : Lifting Problem

Recall that there is no known example that s(K ) ̸= sR(K ) for a PL sphere K .

A stronger question, the lifting problem, was proposed by Zhi Lü at the Osaka
toric topology conference in 2011.

Lifting problem

Let K be a PL sphere.
For a mod 2 characteristic map λR over K , is there λC over K such that the
following diagram commute?

[m]

Zn

Zn
2

∃λC

λR

mod 2

If it exists, then λC is called a lift of λR.

Suyoung Choi Buchstaber Numbers and Toric Wedge Induction August 23, 2024 17 / 23



Application : Lifting Problem

Recall that there is no known example that s(K ) ̸= sR(K ) for a PL sphere K .

A stronger question, the lifting problem, was proposed by Zhi Lü at the Osaka
toric topology conference in 2011.

Stronger version of Lifting problem

Let K be a PL sphere on [m].
Given a subgroup of Zm

2 acting freely on RZK , is this action induced by a
subtorus of Tm freely acting on ZK?

Note : Since RZK is the fixed point set by the involution on ZK induced by the
complex conjugation on D2 ⊂ C, the Tm-action on ZK induces the Zm

2 -action
on RZK .
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Application : Lifting Problem

Let K be a PL (n − 1)-sphere on [m].

Any 3× 3 (0, 1)-matrix has the determinant either 0 or ±1. Hence, for n ≤ 3, if

λC sends to [m] to {0, 1}-vectors and λR ≡ λC(mod 2),

then λC is a lift of λR.

Since similar arguments can be applicable to the dual characteristic map, the
lifting property holds for the case where n ≤ 3 or m − n ≤ 3.

Goal

Solve the lifting problem for n = 4 or m − n = 4.
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Modified toric wedge induction

If λR = λR
1 ∧v λ

R
2 and λR

1 ̸= λR
2 , then λR is said to be irreducible.

Note : The irreducibility of λR over K (J) can be determined by the injectivity

of the dual characteristic map λR.

Theorem (Modified toric wedge induction)

Suppose that the following holds:
Basis step

P(K (J), λR) holds for any irreducible (K (J), λR) ∈ X .

Inductive step

P(L, λR) holds ⇒ (wedv (L), λ
R ∧v λ

R) holds.

Then P holds on X .
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Application : Lifting Problem

Goal

Solve the lifting problem for m − n = 4.

Inductive step

Proposition

If λR over K has a lift, then λR ∧v λ
R over wedv K has a lift.

In particular, we regard the cases when λR
1 ∧v λ

R
2 for distinct λR

1 and λR
2 as the

basis step. (This is still finite!)
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Application : Lifting Problem

MA: the binary matroid represented by

A =


1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1


MA has 840 facets:

835 facets with determinants ±1,

5 facets with determinants ±3.

A dual characteristic map λR is injective.
=⇒ λR can be regarded as an embedding K → MA.
=⇒ if λR(σ) is not one of the 5 facets for any facet σ of K , then λR has a lift.
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Application : Lifting Problem

Basis step

Lemma

If K has facets fewer than 168, then any λR has a lift.

Proof. ∃g ∈ GL(4;Z2) such that

λR(K ) ⊂ MgA
∼= MA does not contain any of the 5 facets.

There are only 6 pairs (K , λR) for which K has more than 167 facets and λR is
injective.

Theorem (Choi-Jang-Vallée, arXiv:2404.15600)

Every mod 2 characteristic map over a PL sphere with m − n = 4 has a lift.

Suyoung Choi Buchstaber Numbers and Toric Wedge Induction August 23, 2024 22 / 23



Application : Lifting Problem

Basis step

Lemma

If K has facets fewer than 168, then any λR has a lift.

Proof. ∃g ∈ GL(4;Z2) such that

λR(K ) ⊂ MgA
∼= MA does not contain any of the 5 facets.

There are only 6 pairs (K , λR) for which K has more than 167 facets and λR is
injective.

Theorem (Choi-Jang-Vallée, arXiv:2404.15600)

Let K be a PL (n − 1)-sphere on [m] with m − n ≤ 4.
Then, every subgroup of Zm

2 freely acting on RZK is induced from a subtorus
of Tm freely acting on ZK .
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Thank you for your attention!
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Appendix : PL spheres of Picard number 4

Intuitively try to find all PL spheres, and compute their (real) Buchstaber
numbers. However, it is hopeless when we consider high dimensions.

We could obtain up to n = 6, but it seems to take too long to finish for bigger n.

n 2 3 4 5 6

PL spheres 1 5 39 337 6257

sR = 4 1 5 37 281 2353
sR = 3 0 0 2 56 3904

seeds 1 4 23 194 4237

sR = 4 1 4 21 142 733
sR = 3 0 0 2 52 3504



Appendix : Ideas for GPU-friendly coding

MA: the binary matroid represented by

A =


1 0 0 0 1 1 1 0 0 0 1 1 1 0 1
0 1 0 0 1 0 0 1 1 0 1 1 0 1 1
0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 0 0 1 0 0 1 0 1 1 0 1 1 1 1

 .

We observe the following facts;

1 (Gale duality) If K is a Zn
2-colorable seed, then K is embedded into MA,

where K is the simplicial complex whose cofacets are facets of K .

2 (Linear algebra) Note that MA has 840 facets. If we regard K as a
Z840
2 -vector, then it is in the kernel of the ridge-facet incidence matrix M of

the dual of MA.

3 (Weak pseudo-manifold condition) For each element of the kernel of M, we
have to check whether every ridge is included in exactly two facets.
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