Real toric manifolds and permutations derived from chordal nestohedra

Younghan Yoon Joint work with Suyoung Choi (Ajou Univ.)

2024 Workshop on Toric Topology The Fields Institute

2024. 08. 22.

Definition

Let $x = x_1 x_2 \cdots x_n$ be a (one-line notation) permutation. For each $1 \le i \le n-1$, i is a **descent** of x if $x_i > x_{i+1}$.

Example 1

Definition

Let $x = x_1 x_2 \cdots x_n$ be a (one-line notation) permutation. For each $1 \le i \le n-1$, i is a **descent** of x if $x_i > x_{i+1}$.

Example 1

#descents	0	1	2	3
permutations	1234			
count	1			

Definition

Let $x = x_1 x_2 \cdots x_n$ be a (one-line notation) permutation. For each $1 \le i \le n-1$, i is a **descent** of x if $x_i > x_{i+1}$.

Example 1

#descents	0	1	2	3
permutations	1234	4 123		
count	1	1		

Definition

Let $x = x_1 x_2 \cdots x_n$ be a (one-line notation) permutation. For each $1 \le i \le n-1$, i is a **descent** of x if $x_i > x_{i+1}$.

Example 1

#descents	0	1	2	3
permutations	1234	4 123, 3 124		
count	1	2		

Definition

Let $x = x_1 x_2 \cdots x_n$ be a (one-line notation) permutation. For each $1 \le i \le n-1$, i is a **descent** of x if $x_i > x_{i+1}$.

Example 1

#descents	0	1	2	3
permutations	1234	4123,3124, 2134,3412, 2413,2314, 1423,1324, 2341,1342, 1243	3214,4213, 4312,2143, 3142,4132, 3241,4231, 1432,2431, 3421	4321
count	1	11	11	1

Proposition

For a 2*n*-dimensional **permutohedral variety** X_{A_n} ,

$$\dim H_k(X_{A_n};\mathbb{Q}) = \begin{cases} \left| \left\{ x \in \mathfrak{S}_{n+1} \colon \# \text{descents of } x = \frac{k}{2} \right\} \right|, & \text{if } k \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Proposition

For a 2*n*-dimensional **permutohedral variety** X_{A_n} ,

$$\dim H_k(X_{A_n};\mathbb{Q}) = \begin{cases} \left| \left\{ x \in \mathfrak{S}_{n+1} \colon \# \text{descents of } x = \frac{k}{2} \right\} \right|, & \text{if } k \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Example 1 (revisist)

Compute the rational Betti numbers dim $H_*(X_{A_3}; \mathbb{Q})$ of X_{A_3} .

k	0	1	2	3	4	5	6
permutations	1234		4 123, 3 124,		3214,4213,		4321
			2134,3412,		4312,2143,		
			2413,2314,		3142,4132,		
			1423,1324,		3241,4231,		
			2341,1342,		1432,2431,		
			1243		3421		
$\dim H_k(X_{A_3,};\mathbb{Q})$	1	0	11	0	11	0	1

Definition

A permutation $x = x_1 x_2 \cdots x_n$ is **alternating** if

$$x_1 > x_2 < x_3 > \cdots$$
.

Example 2

For each $0 \le k \le 2$, count #alternating permutations on 2k-subsets of $\{1, 2, 3, 4\}$.

Definition

A permutation $x = x_1 x_2 \cdots x_n$ is **alternating** if

$$x_1 > x_2 < x_3 > \cdots$$
.

Example 2

For each $0 \le k \le 2$, count #alternating permutations on 2k-subsets of $\{1, 2, 3, 4\}$.

k	0	1	2
alternating permutations on $2k$ -subsets of $\{1,2,3,4\}$	()	43,42,41, 32,31,21	4231,4132, 3241,3142, 2143
count	1	6	5

Theorem(A. Henderson, 2012)

Let $X_{A_n}^{\mathbb{R}}$ be an *n*-dimensional **real permutohedral variety**, that is, the real locus of a 2n-dimensional permutohedral variety $X_{A_n}^{\mathbb{R}}$. Then

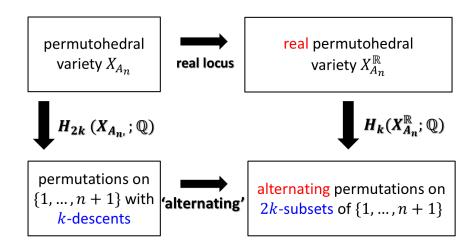
$$\dim H_k(X_{A_n}^{\mathbb{R}};\mathbb{Q}) = \#$$
alternating permutations on $2k$ -subsets of $\{1,2,\ldots,n+1\}$.

Example 2 (revisist)

Compute the rational Betti numbers dim $H_*(X_{A_3}^{\mathbb{R}};\mathbb{Q})$ of $X_{A_3}^{\mathbb{R}}$.

k	0	1	2
alternating permutations on $2k$ -subsets of $\{1,2,3,4\}$	()	43,42,41, 32,31,21	4231,4132, 3241,3142, 2143
$\dim H_k(X_{A_3}^{\mathbb{R}};\mathbb{Q})$	1	6	5

Summary



Definition

A **building set** \mathcal{B} is a collection of nonempty subsets of $\{1,\ldots,n+1\}$ that satisfies the following condtions:

- 1. $\{i\} \in \mathcal{B}$ for $1 \le i \le n$, and
- 2. if $I, J \in \mathcal{B}$ and $I \cap J \neq \emptyset$, $I \cup J \in \mathcal{B}$.

Definition

A (connected) **building set** \mathcal{B} is a collection of nonempty subsets of $\{1, \ldots, n+1\}$ that satisfies the following condtions:

- 1. $\{i\} \in \mathcal{B}$ for $1 \le i \le n$, and
- 2. if $I, J \in \mathcal{B}$ and $I \cap J \neq \emptyset$, $I \cup J \in \mathcal{B}$.
- 3. $\{1, \ldots, n+1\} \in \mathcal{B}$

Definition

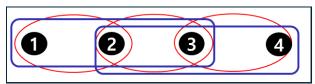
A (connected) **building set** \mathcal{B} is a collection of nonempty subsets of $\{1, \ldots, n+1\}$ that satisfies the following condtions:

- 1. $\{i\} \in \mathcal{B}$ for $1 \le i \le n$, and
- 2. if $I, J \in \mathcal{B}$ and $I \cap J \neq \emptyset$, $I \cup J \in \mathcal{B}$.
- 3. $\{1, \ldots, n+1\} \in \mathcal{B}$

Example

Consider a (connected) building set \mathcal{B} on $I = \{1, 2, 3, 4\}$ defined by

$$\mathcal{B} = \{1, 2, 3, 4, \frac{12}{23}, \frac{23}{34}, \frac{123}{234}, \frac{234}{1234}\}.$$



Definition

For a building set \mathcal{B} , a **nestohedron** $P_{\mathcal{B}}$ is the minkowski sum

$$P_{\mathcal{B}} = \sum_{\mathbf{I} \in \mathcal{B}} \text{convex hull} (\{e_i \colon i \in \mathbf{I}\}).$$

Definition

For a building set \mathcal{B} , a **nestohedron** $P_{\mathcal{B}}$ is the minkowski sum

$$P_{\mathcal{B}} = \sum_{\mathbf{I} \in \mathcal{B}} \text{convex hull}(\{e_i \colon i \in \mathbf{I}\}).$$

Remark

The family of nestohedra include the following polytopes:

- Permutohedra
- Associahedra
- Stellohedra
- ► Stanley-Pitman polytopes
- ► Hochschild polytopes

Definition

A smooth compact toric variety X is called a **toric manifold**.

Theorem (Fundamental theorem of toric geometry)

Category of toric manifolds $\stackrel{equiv}{\longleftrightarrow}$ Category of smooth complete fans

Proposition

The normal fan of each nestohedron is a smooth complete fan.

Definition

A smooth compact toric variety X is called a **toric manifold**.

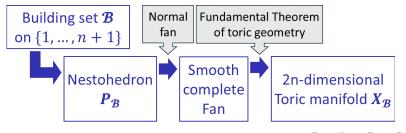
Theorem (Fundamental theorem of toric geometry)

Category of toric manifolds $\stackrel{equiv}{\longleftrightarrow}$ Category of smooth complete fans

Proposition

The normal fan of each nestohedron is a smooth complete fan.

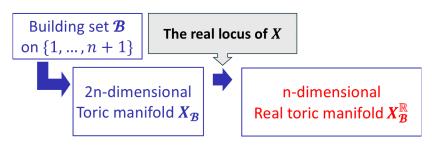
Summary



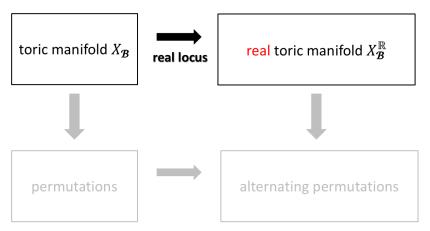
Definition

For a toric manifold X, a **real toric manifold** $X^{\mathbb{R}}$ is the fixed point set of X by the canonical involution induced from a complex conjugation.

Remark



Remark



Definition

A building set \mathcal{B} is **chordal** if for each $\{i_1 < \cdots < i_k\} \in \mathcal{B}$,

$$\{i_2,\ldots,i_k\}\in\mathcal{B}$$
.

If \mathcal{B} is chordal, $P_{\mathcal{B}}$ is a **chordal nestohedron**.

Definition

A building set \mathcal{B} is **chordal** if for each $\{i_1 < \cdots < i_k\} \in \mathcal{B}$,

$$\{i_2,\ldots,i_k\}\in\mathcal{B}$$
.

If \mathcal{B} is chordal, $P_{\mathcal{B}}$ is a **chordal nestohedron**.

Example

Consider a (connected) building set \mathcal{B} on $\{1,2,3,4,5,6\}$.

$$\mathcal{B} = \{1, 2, 3, 4, 5, 6, \frac{123456}{}\}.$$

Definition

A building set \mathcal{B} is **chordal** if for each $\{i_1 < \cdots < i_k\} \in \mathcal{B}$,

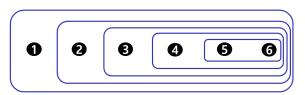
$$\{i_2,\ldots,i_k\}\in\mathcal{B}$$
.

If \mathcal{B} is chordal, $P_{\mathcal{B}}$ is a **chordal nestohedron**.

Example

Consider a (connected) building set \mathcal{B} on $\{1,2,3,4,5,6\}$. If \mathcal{B} is chordal, then

$$\mathcal{B} = \{1, 2, 3, 4, 5, 6, 56, 456, 3456, 23456, 123456\}.$$



Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{\mathrm{I}} = \{\mathrm{J} \in \mathcal{B} \colon \mathrm{J} \subset \mathrm{I}\}$$

is a **restricted building set** of $\mathcal B$ to I.

Definition

For a subset I of $\{1, 2, \ldots, n\}$,

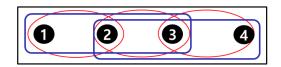
$$\mathcal{B}|_{\mathrm{I}} = \{ \mathrm{J} \in \mathcal{B} \colon \mathrm{J} \subset \mathrm{I} \}$$

is a **restricted building set** of \mathcal{B} to I.

Example

A building set \mathcal{B} is as follows:

$$\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$



Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{I}=\{J\in\mathcal{B}\colon J\subset I\}$$

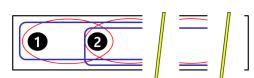
is a **restricted building set** of \mathcal{B} to I.

Example

The restricted building set $\mathcal{B}|_{\{1,2\}}$ is as follows:

$$\mathcal{B}|_{\{1,2\}} = \{1,2,\cancel{3},\cancel{4},\cancel{12},\cancel{23},\cancel{34},\cancel{123},\cancel{234},\cancel{1234}\}$$

$$\mathcal{B}|_{\{1,2\}}$$



Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{\mathrm{I}} = \{ \mathrm{J} \in \mathcal{B} \colon \mathrm{J} \subset \mathrm{I} \}$$

is a **restricted building set** of \mathcal{B} to I.

Example

The restricted building set $\mathcal{B}|_{\{1,2\}}$ is as follows:

$$\mathcal{B}|_{\{1,2\}} = \{1,2,\frac{12}{2}\}$$

$$\mathcal{B}|_{\{1,2\}}$$

Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{I} = \{J \in \mathcal{B} \colon J \subset I\}$$

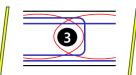
is a restricted building set of ${\mathcal B}$ to I.

Example

The restricted building set $\mathcal{B}|_{\{1,3\}}$ is as follows:

$$\mathcal{B}|_{\{1,3\}} = \{1,2,3,\cancel{4},\cancel{12},\cancel{23},\cancel{34},\cancel{123},\cancel{234},\cancel{1234}\}$$

$$\mathcal{B}|_{\{1,3\}}$$



Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{I} = \{J \in \mathcal{B} \colon J \subset I\}$$

is a restricted building set of $\mathcal B$ to I.

Example

The restricted building set $\mathcal{B}|_{\{1,3\}}$ is as follows:

$$\mathcal{B}|_{\{1,3\}}=\{1,3\}$$

$$\mathcal{B}|_{\{\mathbf{1},\mathbf{3}\}}$$

Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{I} = \{J \in \mathcal{B} \colon J \subset I\}$$

is a restricted building set of ${\mathcal B}$ to I.

Example

The restricted building set $\mathcal{B}|_{\{2,3,4\}}$ is as follows:

$$\mathcal{B}|_{\{2,3,4\}} = \{1,2,3,4,12,23,34,123,234,1234\}$$

$$\mathcal{B}|_{\{2,3,4\}}[$$

Definition

For a subset I of $\{1, 2, \ldots, n\}$,

$$\mathcal{B}|_{I} = \{J \in \mathcal{B} \colon J \subset I\}$$

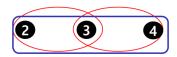
is a restricted building set of ${\mathcal B}$ to I.

Example

The restricted building set $\mathcal{B}|_{\{2,3,4\}}$ is as follows:

$$\mathcal{B}|_{\{2,3,4\}}=\{2,3,4,\textcolor{red}{23},\textcolor{red}{34},\textcolor{blue}{234}\}$$

$$\mathcal{B}|_{\{2,3,4\}}$$



Definition

For a building set \mathcal{B} , a permutation $x_1 \cdots x_n$ is a \mathcal{B} -permutation if, for each $1 \leq i \leq n$, there is $J_i \in \mathcal{B}|_{\{x_1,x_2,\dots,x_i\}}$ such that

$$\{x_i, \max\{x_1, x_2, \ldots, x_i\}\} \subset J_i,$$

and $\mathfrak{S}(\mathcal{B})$ denotes the set of \mathcal{B} -permutations.

Definition

For a building set \mathcal{B} , a permutation $x_1 \cdots x_n$ is a \mathcal{B} -permutation if, for each $1 \leq i \leq n$, there is $J_i \in \mathcal{B}|_{\{x_1,x_2,\dots,x_i\}}$ such that

$$\{x_i, \max\{x_1, x_2, \ldots, x_i\}\} \subset J_i,$$

and $\mathfrak{S}(\mathcal{B})$ denotes the set of \mathcal{B} -permutations.

Example

If a building set $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$, then **1432** is a \mathcal{B} -permutation.

$$\begin{split} \cdots & \begin{cases} \{\textbf{1}, \text{max}\, \{\textbf{1}\}\} \subset J_1 = \{1\} \in \mathcal{B}|_{\{1\}}, \\ \{\textbf{4}, \text{max}\{\textbf{1}, \textbf{4}\}\} \subset J_2 = \{4\} \in \mathcal{B}|_{\{1,4\}}, \\ \{\textbf{3}, \text{max}\{\textbf{1}, \textbf{4}, \textbf{3}\}\} \subset J_3 = \{3, 4\} \in \mathcal{B}|_{\{1,4,3\}}, \\ \{\textbf{2}, \text{max}\{\textbf{1}, \textbf{4}, \textbf{3}, \textbf{2}\}\} \subset J_4 = \{\textbf{1}, \textbf{2}, \textbf{3}, \textbf{4}\} \in \mathcal{B}. \end{cases} \end{split}$$

Definition

For a building set \mathcal{B} , a permutation $x_1 \cdots x_n$ is a \mathcal{B} -permutation if, for each $1 \leq i \leq n$, there is $J_i \in \mathcal{B}|_{\{x_1, x_2, \dots, x_i\}}$ such that

$$\{x_i, \max\{x_1, x_2, \ldots, x_i\}\} \subset \mathbf{J}_i,$$

and $\mathfrak{S}(\mathcal{B})$ denotes the set of \mathcal{B} -permutations.

Example

If a building set $\mathcal{B}=\{1,2,3,4,12,23,34,123,234,1234\}$, then **1423** is **not** a \mathcal{B} -permutation.

Definition

For a building set \mathcal{B} , a permutation $x_1 \cdots x_n$ is a \mathcal{B} -permutation if, for each $1 \leq i \leq n$, there is $J_i \in \mathcal{B}|_{\{x_1, x_2, \dots, x_i\}}$ such that

$$\{x_i, \max\{x_1, x_2, \ldots, x_i\}\} \subset \mathbf{J}_i,$$

and $\mathfrak{S}(\mathcal{B})$ denotes the set of \mathcal{B} -permutations.

Example

If a building set $\mathcal{B}=\{1,2,3,4,12,23,34,123,234,1234\}$, then **1423** is **not** a \mathcal{B} -permutation. Because, there is no J_3 in

$$\mathcal{B}|_{\{1,4,2\}} = \{1,2,4,12\}$$

such that $\{2, \max\{1, 4, 2\}\} = \{2, 4\} \in J_3$.

Example 3

A building set \mathcal{B} is as follows:

$$\{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$

Example 3

A building set \mathcal{B} is as follows:

$$\{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$

#descents	0	1	2	3
permutations	1234	4123,3124, 2134,3412, 2413,2314, 1423,1324, 2341,1342, 1243	3214,4213, 4312,2143, 3142,4132, 3241,4231, 1432,2431, 3421	4321
count	1	11	11	1

Example 3

A building set \mathcal{B} is as follows:

$$\{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$

#descents	0	1	2	3
B -permutations	1234	4123,3124, 2134,3412, 2413,2314, 1423,1324, 2341,1342, 1243	3214,4213, 4312,2143, 3142,4132, 3241,4231, 1432,2431, 3421	4321
count				

Example 3

A building set \mathcal{B} is as follows:

$$\{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$

#descents	0	1	2	3
B -permutations	1234	4123,3124, 2134,3412, 2413,2314, 1423,1324, 2341,1342, 1243	3214,4213, 4312,2143, 3142,4132, 3241,4231, 1432,2431, 3421	4321
count	1	6	6	1

Example 3

A building set \mathcal{B} is as follows:

$$\{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$$

#descents	0	1	2	3
B -permutations	1234	2134,2314, 1324,2341, 1342,1243	3214,2143, 3241,1432, 2431,3421	4321
count	1	6	6	1

Theorem (A. Postnikov, V. Reiner, L. Williams, 2008)

For a chordal building set \mathcal{B} on $\{1, 2, ..., n+1\}$, the h-vector of the nestohedron $P_{\mathcal{B}}$ is as follows:

$$h_k(P_{\mathcal{B}}) = \begin{cases} \left| \left\{ x \in \mathfrak{S}(\mathcal{B}) \colon \# \text{descents of } x = \frac{k}{2} \right\} \right|, & \text{if } k \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Corollary (A. Postnikov, V. Reiner, L. Williams, 2008)

For a chordal building set \mathcal{B} on $\{1, \ldots, n\}$,

$$\dim H_k(X_{\mathcal{B}};\mathbb{Q}) = \begin{cases} \left| \{x \in \mathfrak{S}(\mathcal{B}) \colon \# \text{descents of } x = \frac{k}{2} \} \right|, & \text{if k is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Corollary (A. Postnikov, V. Reiner, L. Williams, 2008)

For a chordal building set \mathcal{B} on $\{1, \ldots, n\}$,

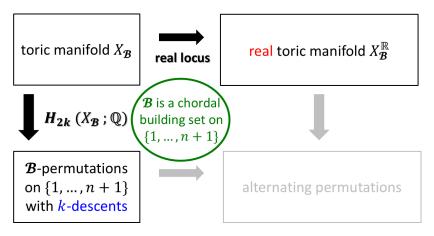
$$\dim H_k(X_{\mathcal{B}};\mathbb{Q}) = \begin{cases} \left| \left\{ x \in \mathfrak{S}(\mathcal{B}) \colon \# \text{descents of } x = \frac{k}{2} \right\} \right|, & \text{if } k \text{ is even,} \\ 0, & \text{otherwise.} \end{cases}$$

Example 3 (revisit)

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}; \mathbb{Q})$ of $X_{\mathcal{B}}$.

k	0	1	2	3	4	5	6
${\cal B}$ -permutations	1234		2134,2314, 1324,2341, 1342,1243		3214,2143, 3241,1432, 2431,3421		4321
$\dim H_k(X_{\mathcal{B}_i};\mathbb{Q})$	1	0	6	0	6	0	1

Summary



Theorem (S. Choi and Y. Yoon, arXiv:2407.11313)

For a chordal building set \mathcal{B} on $[n+1] = \{1, 2, \dots, n+1\}$,

$$\text{dim}\ \textit{H}_{\textit{k}}(\textit{X}_{\mathcal{B}}^{\mathbb{R}};\mathbb{Q}) = \sum_{I} \# \text{alternating}\ \mathcal{B}|_{I} \text{-permutations},$$

where I is a 2k-subset of [n+1].

Theorem (S. Choi and Y. Yoon, arXiv:2407.11313)

For a chordal building set \mathcal{B} on $[n+1] = \{1, 2, \dots, n+1\}$,

$$\text{dim}\ \textit{H}_{\textit{k}}(\textit{X}_{\mathcal{B}}^{\mathbb{R}};\mathbb{Q}) = \sum_{I} \# \text{alternating}\ \mathcal{B}|_{I} \text{-permutations},$$

where I is a 2k-subset of [n+1].

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating permutations	()	43,42,41,	4231,4132,
on $2k$ -subsets of $\{1, \dots, n+1\}$		32,31,21	3241,3142,2143
count	1	6	5

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $\mathcal{B} _{I}$ -permutations	()	43,42,41,	4231,4132,
$(I \subset \{1, \dots, n+1\}, I = 2k)$		32,31,21	3241,3142,2143
count = dim $H_k(X_{\mathcal{B}}^{\mathbb{R}};\mathbb{Q})$	1		

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $\mathcal{B} _{I}$ -permutations $(I \subset \{1,, n+1\}, I = 2k)$	()	43,42,41, 32,31,21	4231,4132, 3241,3142,2143
count = $\dim H_k(X^\mathbb{R}_\mathcal{B};\mathbb{Q})$	1	1	

Since

$$\begin{cases} \{\textbf{4}, \max\{\textbf{4}\}\} \subset J_1 = \{\textbf{4}\} \in \mathcal{B}|_{\{\textbf{4}\}} = \{\{\textbf{4}\}\} \\ \{\textbf{3}, \max\{\textbf{4}, \textbf{3}\}\} \subset J_2 = \{\textbf{4}, \textbf{3}\} \in \mathcal{B}|_{\{\textbf{4}, \textbf{3}\}} = \{\{\textbf{3}\}, \{\textbf{4}\}, \{\textbf{3}, \textbf{4}\}\}, \end{cases}$$

the permutation **43** is an alternating $\mathcal{B}|_{\{4,3\}}$ -permutation.

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $\mathcal{B} _{I}$ -permutations $(I \subset \{1,, n+1\}, I = 2k)$	()	43,42,41, 32,31,21	4231 ,4132, 3241,3142,2143
count = dim $H_k(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$	1	1	

▶ Since there is no J₂ such that

$$\{\mathbf{2}, \max\{\mathbf{4}, 2\}\} \subset \mathbf{J_2} \in \mathcal{B}|_{\{4,2\}} = \{2, 4\},$$

both **42** and **4231** are **not** alternating $\mathcal{B}|_{\{4,2\}}$ -permutations.

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $\mathcal{B} _{I}$ -permutations $(I \subset \{1,, n+1\}, I = 2k)$	()	43,42,41, 32,31,21	4231 , 4132 , 3241,3142,2143
$(I \subseteq \{1,, n+1\}, I = 2k)$ $\operatorname{count} = \dim H_k(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$	1	1	3241,3142,2143

► Since there is no J₂ such that

$$\{1, \max\{4, 1\}\} \subset J_2 \in \mathcal{B}|_{\{4, 1\}} = \{1, 4\},$$

both **41** and **4132** are **not** alternating $\mathcal{B}|_{\{4,1\}}$ -permutations.

Example 4

Let $\mathcal{B}=\{1,2,3,4,12,23,34,123,234,1234\}$. Compute the rational Betti numbers dim $H_*(X_\mathcal{B}^\mathbb{R};\mathbb{Q})$ of $X_\mathcal{B}^\mathbb{R}$.

k	0	1	2
alternating $oldsymbol{\mathcal{B}} _{I}$ -permutations	()	43,42,41,	4231 ,4 132 ,
$(I \subset \{1, \dots, n+1\}, I = 2k)$		32 ,31,21	3241 ,3142,2143
count = $\dim H_k(X^\mathbb{R}_\mathcal{B};\mathbb{Q})$	1	2	

▶ Both **32** and **3241** are alternating \mathcal{B} |-permutations.

$$\begin{array}{l} \cdot \cdot \begin{cases} \{\textbf{3}, \mathsf{max}\{\textbf{3}\}\} \subset J_1 = \{\textbf{3}\} \in \mathcal{B}|_{\{3\}} = \{\{\textbf{3}\}\} \\ \{\textbf{2}, \mathsf{max}\{\textbf{3}, 2\}\} \subset J_2 = \{\textbf{3}, \textbf{2}\} \in \mathcal{B}|_{\{3, 2\}} = \{\{2\}, \{3\}, \{2, \textbf{3}\}\} \\ \{\textbf{4}, \mathsf{max}\{\textbf{3}, 2, \textbf{4}\}\} \subset J_3 = \{\textbf{4}\} \in \mathcal{B}|_{\{3, 2, \textbf{4}\}} = \{\{2\}, \{3\}, \{\textbf{4}\}, \cdots\} \\ \{\textbf{1}, \mathsf{max}\{\textbf{3}, 2, \textbf{4}, 1\}\} \subset J_4 = \{\textbf{1}, \textbf{2}, \textbf{3}, \textbf{4}\} \in \mathcal{B}, \end{cases}$$

Example 4

Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $\mathcal{B} _{I}$ -permutations	()	43,42,41,	4231,4132, 3241,3142,2143
$(I \subset \{1,, n+1\}, I = 2k)$ count = dim $H_k(X_B^{\mathbb{R}}; \mathbb{Q})$	1	32, 3± ,21	3241,3142 ,2143
count – unit $\mathbf{n}_k(\mathbf{\Lambda}_{\mathcal{B}}; \mathbb{Q})$			

► Since there is no J₂ such that

$$\{\bm{1}, \max\{\bm{3},1\}\} \subset \bm{J_2} \in \mathcal{B}|_{\{3,1\}} = \{1,3\},$$

both **31** and **3142** are **not** alternating $\mathcal{B}|_{\{3,1\}}$ -permutations.

Example 4

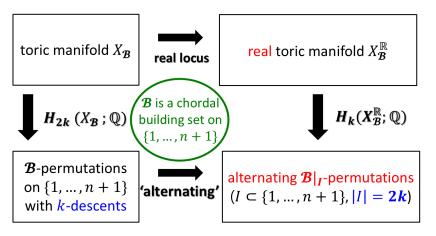
Let $\mathcal{B} = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}$. Compute the rational Betti numbers dim $H_*(X_{\mathcal{B}}^{\mathbb{R}}; \mathbb{Q})$ of $X_{\mathcal{B}}^{\mathbb{R}}$.

k	0	1	2
alternating $oldsymbol{\mathcal{B}} _{I}$ -permutations	()	43,42,41,	4231 ,4 132 ,
$(I \subset \{1,\ldots,n+1\}, I =2k)$		32,31,21	3241, 3142 ,2143
count = $\dim H_k(X^\mathbb{R}_\mathcal{B};\mathbb{Q})$	1	3	2

▶ Both **21** and **2143** are alternating $\mathcal{B}|_{\{4,3\}}$ -permutations.

$$\begin{array}{l} \cdot \cdot \begin{cases} \{\textbf{2}, \text{max}\{\textbf{2}\}\} \subset J_1 = \{2\} \in \mathcal{B}|_{\{2\}} = \{\{2\}\} \\ \{\textbf{1}, \text{max}\{\textbf{2}, 1\}\} \subset J_2 = \{1, 2\} \in \mathcal{B}|_{\{2, 1\}} = \{\{1\}, \{2\}, \{1, 2\}\} \\ \{\textbf{4}, \text{max}\{2, 1, \textbf{4}\}\} \subset J_3 = \{\textbf{4}\} \in \mathcal{B}|_{\{2, 1, 4\}} = \{\cdots, \{\textbf{4}\}, \{1, 2\}\} \\ \{\textbf{3}, \text{max}\{2, 1, \textbf{4}, 3\}\} \subset J_4 = \{\textbf{3}, \textbf{4}\} \in \mathcal{B}, \end{cases}$$

Summary



Definition

For a finite simple graph G, the set of connected induced subgraphs of G is the **graphical building set** $\mathcal{B}(G)$ of G. The nestohedron $P_{\mathcal{B}(G)}$ of $\mathcal{B}(G)$ is called a **graph associahedron** of a graph G.

Example

Let P_4 be a path graph as follows:

Path graph
$$P_4$$
 $\stackrel{1}{\bullet}$ $\stackrel{2}{\bullet}$ $\stackrel{3}{\bullet}$ $\stackrel{4}{\bullet}$

Then $\mathcal{B}(P_4) = \{1, 2, 3, 4, 12, 23, 34, 123, 234, 1234\}.$

Remark

Let G be a finite simple graph G. In 2015, S. Choi and H. Park define the **graph a-number** a(G), that is, a purely graph invariant which corresponds the rational Betti numbers of its associated real toric manifold $X_{\mathcal{B}(G)}^{\mathbb{R}}$.

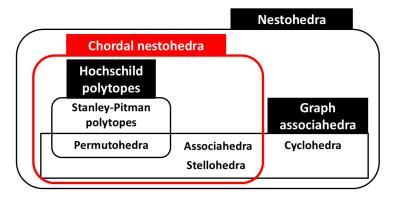
Proposition

For a chordal graph G with a perfect elimination ordering, the graphical building set $\mathcal{B}(G)$ is a chordal building set.

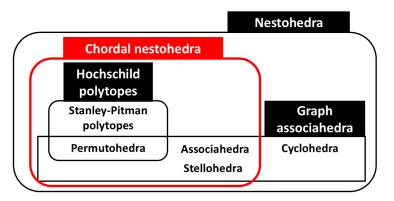
Remark

For a chordal graph G, a combinatorial interpretation of the graph a-number a(G) is the number of alternating $\mathcal{B}(G)$ -permutations.

Category of nestohedra



Category of nestohedra



Conjecture

If \mathcal{B} is a chordal or graphical building set, then the sequence $\{\dim H_k(X_{\mathcal{B}}^{\mathbb{R}};\mathbb{Q})\}_{k\geq 0}$ is unimodal.

Thank you for your attention!

-Younghan Yoon (Ajou univ.)