
Model Theory Postdoctoral Position

I expect to have a postdoctoral position available starting either in
January or July. Please tell any plausible candidate you know
about this and ask them to write to me at f.tall@utoronto.ca.

I work on applications of set theory and/or topology to model
theory, and applications of model theory to analysis, but don’t
know enough model theory or analysis, so I am looking for a
collaborator. The ideal candidate would know model theory, some
set theory, and some functional analysis.
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Overview

Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.
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Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.

Classical Banach spaces all include an isomorphic copy of either c0
or some `p.
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Overview

Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.

Classical Banach spaces all include an isomorphic copy of either c0
or some `p. Tsirelson implicitly(!) defined a Banach space that
didn’t. Gowers asked whether explicitly defined ones do.
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Overview

Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.

Classical Banach spaces all include an isomorphic copy of either c0
or some `p. Tsirelson implicitly(!) defined a Banach space that
didn’t. Gowers asked whether explicitly defined ones do. Casazza
and Iovino showed that to be the case for sufficiently expressive
compact logics, in particular for first order continuous logic.
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Overview

Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.

Classical Banach spaces all include an isomorphic copy of either c0
or some `p. Tsirelson implicitly(!) defined a Banach space that
didn’t. Gowers asked whether explicitly defined ones do. Casazza
and Iovino showed that to be the case for sufficiently expressive
compact logics, in particular for first order continuous logic. We
extend their results to logics satisfying much weaker conditions,
employing the topology of function spaces. A particular concrete
example is continuous Lω1,ω.
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Overview

Definition

The Banach space of sequences of real numbers converging to 0 is
denoted by c0. The Banach space of sequences {xn}n<ω of real
numbers such that

∑
n<ω |xn|

p <∞ is denoted by `p.

Classical Banach spaces all include an isomorphic copy of either c0
or some `p. Tsirelson implicitly(!) defined a Banach space that
didn’t. Gowers asked whether explicitly defined ones do. Casazza
and Iovino showed that to be the case for sufficiently expressive
compact logics, in particular for first order continuous logic. We
extend their results to logics satisfying much weaker conditions,
employing the topology of function spaces. A particular concrete
example is continuous Lω1,ω. This work dramatically improves our
previous papers on this subject.
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Definitions

Definition

For X a completely regular Hausdorff topological space, Cp(X )
denotes the space of real-valued continuous functions on X ,
endowed with the subspace topology inherited from the product
topology on RX .
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Definitions

Definition

Let X be a topological space.

(a) A subset A ⊆ X is relatively compact (in X ) if A is compact.
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Definitions

Definition

Let X be a topological space.

(a) A subset A ⊆ X is relatively compact (in X ) if A is compact.

(b) The space X is countably compact if every infinite subset
Y ⊆ X has a limit point, i.e., a point x ∈ X such that every
open set about x contains infinitely many points of Y .
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Definitions

Definition

Let X be a topological space.

(a) A subset A ⊆ X is relatively compact (in X ) if A is compact.

(b) The space X is countably compact if every infinite subset
Y ⊆ X has a limit point, i.e., a point x ∈ X such that every
open set about x contains infinitely many points of Y .
For A ⊆ B ⊆ X , the subset A is countably compact in B if
every infinite subset of A has a limit point in B. The subset A
is relatively countably compact if its closure in X is countably
compact.
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Definitions

Definition

Let X be a topological space.

(a) A subset A ⊆ X is relatively compact (in X ) if A is compact.

(b) The space X is countably compact if every infinite subset
Y ⊆ X has a limit point, i.e., a point x ∈ X such that every
open set about x contains infinitely many points of Y .
For A ⊆ B ⊆ X , the subset A is countably compact in B if
every infinite subset of A has a limit point in B. The subset A
is relatively countably compact if its closure in X is countably
compact.

(Just think of “countably compact” vs. “compact”)
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Grothendieck’s Theorem

Proposition

A T1 space X is countably compact if and only if every countable
open cover of X includes a finite subcover.
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Grothendieck’s Theorem

Proposition

A T1 space X is countably compact if and only if every countable
open cover of X includes a finite subcover.

Grothendieck’s Theorem

Let X be a countably compact topological space, and A ⊆ Cp(X ).
Then A is relatively compact (in Cp(X )) if and only if it is
countably compact in Cp(X ).
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Grothendieck’s Theorem

Proposition

A T1 space X is countably compact if and only if every countable
open cover of X includes a finite subcover.

Grothendieck’s Theorem

Let X be a countably compact topological space, and A ⊆ Cp(X ).
Then A is relatively compact (in Cp(X )) if and only if it is
countably compact in Cp(X ).

Grothendieck’s Theorem for compact X is the topology behind the
results of Casazza-Iovino. We use more sophisticated topology to
extend their results.
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L-structures

Definition

Given a language L, an L-structure M is a set M, called the
universe of M, together with an interpretation of elements of L,
i.e., a function which assigns an element of M to each constant
symbol, a function from Mn to M for each n-ary function symbol,
and a subset of Mn to each n-ary relation symbol.
Given an L-formula ϕ, we denote by ϕM the interpretation of ϕ in
M.
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L-structures

Definition

Let Str(L) be the set of all equivalence classes under elementary
equivalence of L-structures. For each theory T , let
[T ] = {M̃ ∈ Str(L) : M |= T} (where M̃ is the equivalence class
of M). The collection of all sets of the form [T ] constitutes a
basis for the closed sets of the topology on Str(L) known as the
space of L-structures.
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L-structures

Definition

Let Str(L) be the set of all equivalence classes under elementary
equivalence of L-structures. For each theory T , let
[T ] = {M̃ ∈ Str(L) : M |= T} (where M̃ is the equivalence class
of M). The collection of all sets of the form [T ] constitutes a
basis for the closed sets of the topology on Str(L) known as the
space of L-structures.

(A logic satisfies the Compactness Theorem iff its structure space
is compact.)
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Metric structures

When doing continuous logic, one doesn’t deal with all possible
structures but rather only with metric structures. We follow the
formulation in Chris Eagle’s papers.
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Metric structures

When doing continuous logic, one doesn’t deal with all possible
structures but rather only with metric structures. We follow the
formulation in Chris Eagle’s papers.

The continuous first-order formulas are constructed just as in the
discrete setting except for the following addition: if
f : [0, 1]n → [0, 1] is a continuous function and ϕ0, . . . , ϕn−1 are
L-formulas, then f (ϕ0, . . . , ϕn−1) is also an L-formula.
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Metric structures

When doing continuous logic, one doesn’t deal with all possible
structures but rather only with metric structures. We follow the
formulation in Chris Eagle’s papers.

The continuous first-order formulas are constructed just as in the
discrete setting except for the following addition: if
f : [0, 1]n → [0, 1] is a continuous function and ϕ0, . . . , ϕn−1 are
L-formulas, then f (ϕ0, . . . , ϕn−1) is also an L-formula.

It is customary to identify formulas ϕ of arity n with functions
Mn → [0, 1]. This allows an easy way to define the satisfaction
relation, i.e., if ϕ is an L-formula, M an L-structure, and a ∈Mn,
then M � ϕ(a) if and only if ϕ(a) = 1.
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Definition

(a) If (M, d) and (N, ρ) are metric spaces and f : Mn → N is uniformly
continuous, a modulus of uniform continuity of f is a function
δ : (0, 1) ∩Q→ (0, 1) ∩Q such that whenever
a = (a1, ..., an), b = (b1, ..., bn) ∈ Mn and ε ∈ (0, 1) ∩ Q,
sup{d(ai , bi ) : 1 ≤ i ≤ n} < δ(ε) implies ρ(f (a), f (b)) < ε. Similarly
define a modulus of uniform continuity for a predicate.
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Definition

(a) If (M, d) and (N, ρ) are metric spaces and f : Mn → N is uniformly
continuous, a modulus of uniform continuity of f is a function
δ : (0, 1) ∩Q→ (0, 1) ∩Q such that whenever
a = (a1, ..., an), b = (b1, ..., bn) ∈ Mn and ε ∈ (0, 1) ∩ Q,
sup{d(ai , bi ) : 1 ≤ i ≤ n} < δ(ε) implies ρ(f (a), f (b)) < ε. Similarly
define a modulus of uniform continuity for a predicate.

(b) A language for metric structures is a set L which consists of constants,
functions with an associated arity, and a modulus of uniform continuity;
predicates with an associated arity and a modulus of uniform continuity;
and a symbol d for a metric.
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Definition

(a) If (M, d) and (N, ρ) are metric spaces and f : Mn → N is uniformly
continuous, a modulus of uniform continuity of f is a function
δ : (0, 1) ∩Q→ (0, 1) ∩Q such that whenever
a = (a1, ..., an), b = (b1, ..., bn) ∈ Mn and ε ∈ (0, 1) ∩ Q,
sup{d(ai , bi ) : 1 ≤ i ≤ n} < δ(ε) implies ρ(f (a), f (b)) < ε. Similarly
define a modulus of uniform continuity for a predicate.

(b) A language for metric structures is a set L which consists of constants,
functions with an associated arity, and a modulus of uniform continuity;
predicates with an associated arity and a modulus of uniform continuity;
and a symbol d for a metric.

(c) An L-metric structure M is a metric space (M, dM) together with
interpretations for each symbol in L: cM ∈ M for each constant c ∈ L;
f M : Mn → M a uniformly continuous function for each n-ary function
symbol f ∈ L; PM : Mn → [0, 1] a uniformly continuous function for each
n-ary predicate symbol P ∈ L. Assume for the sake of notational
simplicity that all metric structures have diameter 1.
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Definition

(a) If (M, d) and (N, ρ) are metric spaces and f : Mn → N is uniformly
continuous, a modulus of uniform continuity of f is a function
δ : (0, 1) ∩Q→ (0, 1) ∩Q such that whenever
a = (a1, ..., an), b = (b1, ..., bn) ∈ Mn and ε ∈ (0, 1) ∩ Q,
sup{d(ai , bi ) : 1 ≤ i ≤ n} < δ(ε) implies ρ(f (a), f (b)) < ε. Similarly
define a modulus of uniform continuity for a predicate.

(b) A language for metric structures is a set L which consists of constants,
functions with an associated arity, and a modulus of uniform continuity;
predicates with an associated arity and a modulus of uniform continuity;
and a symbol d for a metric.

(c) An L-metric structure M is a metric space (M, dM) together with
interpretations for each symbol in L: cM ∈ M for each constant c ∈ L;
f M : Mn → M a uniformly continuous function for each n-ary function
symbol f ∈ L; PM : Mn → [0, 1] a uniformly continuous function for each
n-ary predicate symbol P ∈ L. Assume for the sake of notational
simplicity that all metric structures have diameter 1.

(d) The space of L-structures in a given language L is the family Str(L) of all
L-metric structures endowed with the topology generated by the following
basic closed sets: [ϕ] = {M : M � ϕ} where ϕ is an L-sentence. 25 / 90
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Definition

(b) A language for metric structures is a set L which consists of constants,
functions with an associated arity, and a modulus of uniform continuity;
predicates with an associated arity and a modulus of uniform continuity;
and a symbol d for a metric.

(c) An L-metric structure M is a metric space (M, dM) together with
interpretations for each symbol in L: cM ∈ M for each constant c ∈ L;
f M : Mn → M a uniformly continuous function for each n-ary function
symbol f ∈ L; PM : Mn → [0, 1] a uniformly continuous function for each
n-ary predicate symbol P ∈ L. Assume for the sake of notational
simplicity that all metric structures have diameter 1.

(d) The space of L-structures in a given language L is the family Str(L) of all
L-metric structures endowed with the topology generated by the following
basic closed sets: [ϕ] = {M : M � ϕ} where ϕ is an L-sentence.

Actually, in order to get Hausdorffness and so as not to deal with proper

classes, we define Str(L) to be the set of elementary equivalence classes of

metric structures. This turns out to be a useful trick in proving the

undefinability results for Lindelöf logics. Except where it’s useful, we will be

sloppy and write M rather than M̃. 26 / 90
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Ultralimits

One of the many equivalent definitions of stability in compact
logics is definability; another one, introduced by Iovino, is a double
limit condition.
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Ultralimits

One of the many equivalent definitions of stability in compact
logics is definability; another one, introduced by Iovino, is a double
limit condition. We pursued a detailed analysis of the topological
conditions on a logic that enable the equivalence between
definability and double limit conditions to hold.
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Ultralimits

We pursued a detailed analysis of the topological conditions on a
logic that enable the equivalence between definability and double
limit conditions to hold.

Definition

Let X be a topological space. Given an ultrafilter U on a regular
cardinal κ, and a κ-sequence {xα}α<κ in X , we say that

lim
α→U

xα = x

if and only if for every open neighbourhood U about x we have
{α < κ : xα ∈ U} ∈ U .
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Ultralimits

Definition

Let X be a topological space. Given an ultrafilter U on a regular
cardinal κ, and a κ-sequence {xα}α<κ in X , we say that

lim
α→U

xα = x

if and only if for every open neighbourhood U about x we have
{α < κ : xα ∈ U} ∈ U .

It follows from the fact that an ultrafilter cannot contain disjoint
sets that if such an ultralimit exists in a Hausdorff space, it is
unique. The following classical result relates ultralimits and
compactness:
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Ultralimits
Definition

Let X be a topological space. Given an ultrafilter U on a regular
cardinal κ, and a κ-sequence {xα}α<κ in X , we say that

lim
α→U

xα = x

if and only if for every open neighbourhood U about x we have
{α < κ : xα ∈ U} ∈ U .

It follows from the fact that an ultrafilter cannot contain disjoint
sets that if such an ultralimit exists in a Hausdorff space, it is
unique. The following classical result relates ultralimits and
compactness:

Theorem

A space X is compact if and only if every ultralimit in X exists.
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Double Ultralimits

Definition

Let X be a topological space and A ⊆ Cp(X , [0, 1]). We write
DULC(A,X ) if:

for every pair of sequences {fn}n<ω ⊆ A and {xm}m<ω ⊆
X , and ultrafilters U and V on ω, the following double
limits agree

lim
n→U

lim
m→V

fn(xm) = lim
m→V

lim
n→U

fn(xm),

whenever all these limits exist.
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Double Ultralimits
Definition

Let X be a topological space and A ⊆ Cp(X , [0, 1]). We write
DULC(A,X ) if:

for every pair of sequences {fn}n<ω ⊆ A and {xm}m<ω ⊆
X , and ultrafilters U and V on ω, the following double
limits agree

lim
n→U

lim
m→V

fn(xm) = lim
m→V

lim
n→U

fn(xm),

whenever all these limits exist.

We write DULC(X ) if DULC(A,X ) holds for all
A ⊆ Cp(X , [0, 1]). We say X satisfies the double ultralimit
condition if for each A ⊆ Cp(X , [0, 1]), DULC(A,X ) is equivalent
to A being relatively countably compact.
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Double limits

Definition

Let X be a topological space and A ⊆ Cp(X , [0, 1]). We write
DLC(A,X ) if:

for every pair of sequences {fn}n<ω ⊆ A and {xm}m<ω ⊆ X ,
the following double limits agree whenever they exist

lim
n→∞

lim
m→∞

fn(xm) = lim
m→∞

lim
n→∞

fn(xm).
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Double limits

Definition

Let X be a topological space and A ⊆ Cp(X , [0, 1]). We write
DLC(A,X ) if:

for every pair of sequences {fn}n<ω ⊆ A and {xm}m<ω ⊆ X ,
the following double limits agree whenever they exist

lim
n→∞

lim
m→∞

fn(xm) = lim
m→∞

lim
n→∞

fn(xm).

We write DLC(X ) if DLC(A,X ) holds for all A ⊆ Cp(X , [0, 1]). We say
X satisfies the double limit condition if for each A ⊆ Cp(X , [0, 1]),
DLC(A,X ) is equivalent to A being relatively countably compact.

35 / 90



Background Double Limits Weakly Grothendieck New Results Appendices

Double limits
Definition

Let X be a topological space and A ⊆ Cp(X , [0, 1]). We write
DLC(A,X ) if:

for every pair of sequences {fn}n<ω ⊆ A and {xm}m<ω ⊆ X ,
the following double limits agree whenever they exist

lim
n→∞

lim
m→∞

fn(xm) = lim
m→∞

lim
n→∞

fn(xm).

We write DLC(X ) if DLC(A,X ) holds for all A ⊆ Cp(X , [0, 1]). We say
X satisfies the double limit condition if for each A ⊆ Cp(X , [0, 1]),
DLC(A,X ) is equivalent to A being relatively countably compact.

Theorem
If X satisfies the double limit condition, then it satisfies the double
ultralimit condition.
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Grothendieck spaces

Definition

A topological space X is called a g -space if every A ⊆ X which is
countably compact in X is relatively compact. We say that X is a
hereditary g -space (a.k.a. angelic) if every subspace of X is a
g -space.
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Grothendieck spaces

The following definitions are the starting point for generalizing
Grothendieck’s Theorem to a broader class of spaces:
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Grothendieck spaces

The following definitions are the starting point for generalizing
Grothendieck’s Theorem to a broader class of spaces:

Definition (Arhangel’skĭı)

A topological space X is Grothendieck if Cp(X ) is a hereditary
g -space. X is weakly Grothendieck if Cp(X ) is a g -space.
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Grothendieck spaces

Definition (Arhangel’skĭı)

A topological space X is Grothendieck if Cp(X ) is a hereditary
g -space. X is weakly Grothendieck if Cp(X ) is a g -space.

From these definitions, we get a generalization of Grothendieck’s
Theorem.
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Grothendieck spaces

Definition (Arhangel’skĭı)

A topological space X is Grothendieck if Cp(X ) is a hereditary
g -space. X is weakly Grothendieck if Cp(X ) is a g -space.

From these definitions, we get a generalization of Grothendieck’s
Theorem.

Lemma

If X is weakly Grothendieck and satisfies the double ultralimit
condition, then a subset A ⊆ Cp(X , [0, 1]) satisfying DULC(A,X )
is relatively compact.
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Grothendieck spaces

Definition (Arhangel’skĭı)

A topological space X is Grothendieck if Cp(X ) is a hereditary
g -space. X is weakly Grothendieck if Cp(X ) is a g -space.

Lemma

If X is weakly Grothendieck and satisfies the double ultralimit
condition, then a subset A ⊆ Cp(X , [0, 1]) satisfying DULC(A,X )
is relatively compact.

Now we can follow Casazza-Iovino and get their undefinability
results by just finding familiar (at least to topologists) classes of
spaces which are weakly Grothendieck and satisfy the double
ultralimit condition.
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Grothendieck spaces
Lemma

If X is weakly Grothendieck and satisfies the double ultralimit
condition, then a subset A ⊆ Cp(X , [0, 1]) satisfying DULC(A,X )
is relatively compact.

Now we can follow Casazza-Iovino and get their undefinability
results by just finding familiar (at least to topologists) classes of
spaces which are weakly Grothendieck and satisfy the double
ultralimit condition.

Continuous logics whose type spaces satisfy these conditions will
not be able to define Tsirelson’s space. You can find the usual
definition of type spaces in any introductory model theory text. It
involves looking at maximal consistent sets of formulas. For
continuous logic, there is an equivalent definition which we will
use. But first, a technicality.
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Pairs of Structures

A key technical concept introduced by Casazza and Iovino and
used to talk about a pair of Banach space norms is the following:
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Pairs of Structures

A key technical concept introduced by Casazza and Iovino and
used to talk about a pair of Banach space norms is the following:

Definition

Let L be a language.

(a) We say that L′ ⊇ L is a language for pairs of structures from
L, if L′ includes two disjoint copies of L and there is a map
Str(L)× Str(L)→ Str(L′) which assigns to every pair of
L-structures M,N an L′-structure 〈M,N〉.
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Pairs of Structures
Definition

Let L be a language.

(a) We say that L′ ⊇ L is a language for pairs of structures from
L, if L′ includes two disjoint copies of L and there is a map
Str(L)× Str(L)→ Str(L′) which assigns to every pair of
L-structures M,N an L′-structure 〈M,N〉.

(b) Let L′ be a language for pairs of structures from L, and X ,Y
function symbols from L. We say that a formula ϕ(X ,Y ) is a
formula for pairs of structures from L, if

(M,N) 7→ ϕ(XM,YN) = Val(ϕ(X ,Y ), 〈M,N〉)

is separately continuous on Str(L)× Str(L). For simplicity, we
write ϕ(M,N) instead of Val(ϕ(X ,Y ), 〈M,N〉).

46 / 90



Background Double Limits Weakly Grothendieck New Results Appendices

Types

Definition
Let L be a language, ϕ an L-formula for pairs of structures, and M ∈ Str(L).
The left ϕ-type of M is the function ltpϕ,M : Str(L)→ [0, 1] given by
ltpϕ,M(N) = ϕ(M,N).
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Types

Definition
Let L be a language, ϕ an L-formula for pairs of structures, and M ∈ Str(L).
The left ϕ-type of M is the function ltpϕ,M : Str(L)→ [0, 1] given by
ltpϕ,M(N) = ϕ(M,N).

The space of left ϕ-types, denoted S l
ϕ is the closure of {ltpϕ,M : M ∈ Str(L)}

in Cp(Str(L), [0, 1]). For a subset C ⊆ Str(L), we denote by S l
ϕ(C) the closure

of the restricted functions { ltpϕ,M

∣∣
C

: M ∈ C} in Cp(C , [0, 1]) and it is called
the space of left ϕ-types over C . Cp(X , [0, 1]) is a closed subspace of Cp(X ) so
has all the relevant properties that Cp(X ) has.
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Types
Definition
Let L be a language, ϕ an L-formula for pairs of structures, and M ∈ Str(L).
The left ϕ-type of M is the function ltpϕ,M : Str(L)→ [0, 1] given by
ltpϕ,M(N) = ϕ(M,N).

The space of left ϕ-types, denoted S l
ϕ is the closure of {ltpϕ,M : M ∈ Str(L)}

in Cp(Str(L), [0, 1]). For a subset C ⊆ Str(L), we denote by S l
ϕ(C) the closure

of the restricted functions { ltpϕ,M

∣∣
C

: M ∈ C} in Cp(C , [0, 1]) and it is called
the space of left ϕ-types over C . Cp(X , [0, 1]) is a closed subspace of Cp(X ) so
has all the relevant properties that Cp(X ) has.

This definition of (left) ϕ-types is equivalent to the usual definition for a

compact logic but makes it easier to exploit the topological richness of spaces

of continuous functions. For more on this, see the first draft of this paper:

[HT] ArXiv:3401.10459. The point is that (ltpϕ,M)−1{1} = {N : ϕ(M,N)}. I

am working on a new, expanded draft which should be ready next month.
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Four wide classes of spaces that are weakly Grothendieck
and satisfy the double ultralimit condition.

We have already mentioned countably compact spaces.
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Four wide classes of spaces that are weakly Grothendieck
and satisfy the double ultralimit condition.

We have already mentioned countably compact spaces.

Definition
A space is separable if it has a countable dense set.
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Four wide classes of spaces that are weakly Grothendieck
and satisfy the double ultralimit condition.

Definition

The tightness t(X ) of X is the smallest infinite cardinal such that for
every A ⊆ X and x ∈ A, there exists a B ⊆ A such that |B| ≤ t(X ) and
x ∈ B. When t(X ) = ℵ0, we say that X is countably tight.
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Four wide classes of spaces that are weakly Grothendieck
and satisfy the double ultralimit condition.

Definition

The tightness t(X ) of X is the smallest infinite cardinal such that for
every A ⊆ X and x ∈ A, there exists a B ⊆ A such that |B| ≤ t(X ) and
x ∈ B. When t(X ) = ℵ0, we say that X is countably tight.

Definition
A topological space X is called a k-space when each subset Y ⊆ X is
closed if and only if its intersection with every compact subspace of X is
closed.
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Topology I
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Topology II
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The proofs that various spaces are weakly Grothendieck are all due
to Arhangel’skĭı and appear in his book on Cp-theory, Topological
Function Spaces, and his paper on Grothendieck spaces, On a
theorem of Grothendieck.

The proof that the double limit condition implies the double
ultralimit condition is in our paper.

The proofs that various topological properties imply the double
(ultra) limit condition are in our paper and are not difficult but
depend heavily on a 1987 paper of H. König and N. Kuhn: Angelic
spaces and the double limit relation. Their paper is also not
difficult.
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Duality Theorems

Without worrying about pairs of structures, there are four topological spaces of
interest in continuous logic: Str(L), Cp(Str(L), [0, 1]), Cp(Cp(Str(L), [0, 1])),
and the space of types, which is a closed subspace of Cp(Str(L), [0, 1]). With
pairs of structures, one needs to replace Str(L) by Str(L)× Str(L).
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Duality Theorems

Without worrying about pairs of structures, there are four topological spaces of
interest in continuous logic: Str(L), Cp(Str(L), [0, 1]), Cp(Cp(Str(L), [0, 1])),
and the space of types, which is a closed subspace of Cp(Str(L), [0, 1]). With
pairs of structures, one needs to replace Str(L) by Str(L)× Str(L).

For compact logics, i.e. logics satisfying the Compactness Theorem, the

structure and type spaces are compact. Almost all of the topological properties

we deal with are closed-hereditary, which simplifies matters. Cp(X , [0, 1]) is a

closed subspace of Cp(X ).
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Duality Theorems

Without worrying about pairs of structures, there are four topological spaces of
interest in continuous logic: Str(L), Cp(Str(L), [0, 1]), Cp(Cp(Str(L), [0, 1])),
and the space of types, which is a closed subspace of Cp(Str(L), [0, 1]). With
pairs of structures, one needs to replace Str(L) by Str(L)× Str(L).

For compact logics, i.e. logics satisfying the Compactness Theorem, the
structure and type spaces are compact. Almost all of the topological properties
we deal with are closed-hereditary, which simplifies matters. Cp(X , [0, 1]) is a
closed subspace of Cp(X ). A large part of Cp-theory is concerned with proving
duality theorems, i.e. proving that X has property P if and only if Cp(X ) has
property Q. For example:

Theorem (Arhangel’skĭı-Pytkeev)

All finite powers of X are Lindelöf if and only if Cp(X ) is countably tight.
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If a continuous logic’s type spaces are weakly Grothendieck and satisfy

the double ultralimit condition, the [CI] proof works to show Tsirelson’s

space is not explicitly definable. We have many topological properties

that imply this conjunction, but it is not necessarily easy to see if a

particular logic’s type spaces satisfy such properties. We know compact

logics have compact type spaces, but it is not clear whether countably

compact logics have countably compact type spaces.
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If a continuous logic’s type spaces are weakly Grothendieck and satisfy
the double ultralimit condition, the [CI] proof works to show Tsirelson’s
space is not explicitly definable. We have many topological properties
that imply this conjunction, but it is not necessarily easy to see if a
particular logic’s type spaces satisfy such properties. We know compact
logics have compact type spaces, but it is not clear whether countably
compact logics have countably compact type spaces. However,

L countably compact =⇒ Str(L) countably compact =⇒
Cp(Str(L), [0, 1]) is weakly Grothendieck and satisfies the double limit condition.

But Cp(Str(L), [0, 1]) is L’s type space!
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Continuous Lω1,ω

This language is obtained by extending Lω1,ω (which allows
countable conjunctions and disjunctions) in the same way one
extends first order logic to continuous logic.
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Continuous Lω1,ω

This language is obtained by extending Lω1,ω (which allows
countable conjunctions and disjunctions) in the same way one
extends first order logic to continuous logic.

If something is definable in (continuous) Lω1,ω, it’s actually
definable in a countable fragment of that language. Morley proved
that type spaces of countable fragments of Lω1,ω are separable
complete metric spaces and the same proof works for continuous
Lω1,ω.
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Continuous Lω1,ω

This language is obtained by extending Lω1,ω (which allows
countable conjunctions and disjunctions) in the same way one
extends first order logic to continuous logic.

If something is definable in (continuous) Lω1,ω, it’s actually
definable in a countable fragment of that language. Morley proved
that type spaces of countable fragments of Lω1,ω are separable
complete metric spaces and the same proof works for continuous
Lω1,ω.

These type spaces are then weakly Grothendieck and satisfy the
double ultralimit condition because they are separable.
Alternatively, because they are first countable.
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Continuous Lω1,ω

This language is obtained by extending Lω1,ω (which allows
countable conjunctions and disjunctions) in the same way one
extends first order logic to continuous logic.

If something is definable in (continuous) Lω1,ω, it’s actually
definable in a countable fragment of that language. Morley proved
that type spaces of countable fragments of Lω1,ω are separable
complete metric spaces and the same proof works for continuous
Lω1,ω.

These type spaces are then weakly Grothendieck and satisfy the
double ultralimit condition because they are separable.
Alternatively, because they are first countable.

So Tsirelson’s space cannot be defined in continuous Lω1,ω, which
is very far from being compact.
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New Results (not in arXiv version)

Definition

A logic is countably compact if countable sets of formulas are
satisfiable whenever all their finite subsets are satisfiable. A logic is
Lindelöf if sets of formulas are satisfiable whenever all their
countable subsets are satisfiable.
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New Results (not in arXiv version)

Definition

A logic is countably compact if countable sets of formulas are
satisfiable whenever all their finite subsets are satisfiable. A logic is
Lindelöf if sets of formulas are satisfiable whenever all their
countable subsets are satisfiable.

Clearly a logic is compact if and only if it is countably compact
and Lindelöf.
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New Results (not in arXiv version)

Definition

A logic is countably compact if countable sets of formulas are
satisfiable whenever all their finite subsets are satisfiable. A logic is
Lindelöf if sets of formulas are satisfiable whenever all their
countable subsets are satisfiable.

Clearly a logic is compact if and only if it is countably compact
and Lindelöf.

Proposition (Folklore)

A logic is compact (resp. countably compact, resp. Lindelöf) if and
only if its structure space is compact (resp. countably compact,
resp. Lindelöf).

68 / 90



Background Double Limits Weakly Grothendieck New Results Appendices

We already knew that the undefinability results Casazza and Iovino
proved for compact logics actually also hold for countably compact
logics. Our new result: they hold for Lindelöf logics as well!
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We already knew that the undefinability results Casazza and Iovino
proved for compact logics actually also hold for countably compact
logics. Our new result: they hold for Lindelöf logics as well!

Sketch of proof. It suffices to show that closed subspaces of
Cp(Str(L)) are countably tight. Countable tightness is
closed-hereditary so it suffices to show Cp(Str(L)) is countably
tight if L is Lindelöf. Recall:
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Lemma (Arhangel’skĭı-Pytkeev)

Cp(X ) is countably tight if and only if X n is Lindelöf, for all n < ω.
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Lemma (Arhangel’skĭı-Pytkeev)

Cp(X ) is countably tight if and only if X n is Lindelöf, for all n < ω.

Thus we need only prove that:

Lemma

Str(L) is Lindelöf if and only if (Str(L))n is Lindelöf for all n < ω.

This proof is due to Chris Eagle.
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Lemma (Arhangel’skĭı-Pytkeev)

Cp(X ) is countably tight if and only if X n is Lindelöf, for all n < ω.

Thus we need only prove that:

Lemma

Str(L) is Lindelöf if and only if (Str(L))n is Lindelöf for all n < ω.

This proof is due to Chris Eagle.

Theorem

If Str(L) is Lindelöf, then Tsirelson space is not definable in L.
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Theorem

If Str(L) is Lindelöf, then Tsirelson space is not definable in L.

Proof Sketch of Lemma.
Add new predicate to L and axioms saying it divides the universe into 2
disjoint pieces. The set of elementary equivalence classes of L-structures
satisfying some axioms is a closed subspace of the set of elementary
equivalence classes of L-structures.
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Theorem

If Str(L) is Lindelöf, then Tsirelson space is not definable in L.

Proof Sketch of Lemma.
Add new predicate to L and axioms saying it divides the universe into 2
disjoint pieces. The set of elementary equivalence classes of L-structures
satisfying some axioms is a closed subspace of the set of elementary
equivalence classes of L-structures.

Aside from avoiding proper classes and making the structure space
Hausdorff, another advantage of dealing with equivalence classes of
structures rather than with structures is that, given 2 classes of

structures M̃ and Ñ, we can without loss of generality assume M and N
are disjoint by simply choosing disjoint representatives M ′ and N ′.
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Theorem

If Str(L) is Lindelöf, then Tsirelson space is not definable in L.

Proof Sketch of Lemma.
Aside from avoiding proper classes and making the structure space
Hausdorff, another advantage of dealing with equivalence classes of
structures rather than with structures is that, given 2 classes of

structures M̃ and Ñ, we can without loss of generality assume M and N
are disjoint by simply choosing disjoint representatives M ′ and N ′.

Thus we can get a bijection between Str(L)× Str(L) and the topological
sum of 2 copies of Str(L). If Str(L) is Lindelöf, so is that topological
sum. The bijection actually induces a homeomorphism, whence we get
that Str(L)× Str(L) is Lindelöf. Of course in general, the square of a
Lindelöf space is not Lindelöf. This proof depends crucially on being able
to write down axioms that say the universe is divided into two disjoint
closed pieces.
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Theorem

If Str(L) is Lindelöf, then Tsirelson space is not definable in L.

Proof Sketch of Lemma.

Thus we can get a bijection between Str(L)× Str(L) and the topological
sum of 2 copies of Str(L). If Str(L) is Lindelöf, so is that topological
sum. The bijection actually induces a homeomorphism, whence we get
that Str(L)× Str(L) is Lindelöf. Of course in general, the square of a
Lindelöf space is not Lindelöf. This proof depends crucially on being able
to write down axioms that say the universe is divided into two disjoint
closed pieces.

It easily follows that (Str(L))n is Lindelöf for all n < ω, but then
Cp(Str(L)) is countably tight by Arhangel’skĭı-Pytkeev. Countable
tightness is closed-hereditary, so Cp(Str(L), [0, 1]) is countably tight.
Then the space of left ϕ-types is countably tight and hence is weakly
Grothendieck and satisfies the double ultralimit condition, so we can
proceed as usual.
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Conclusion

[CI] not only prove that Tsirelson’s space is not explicitly definable
in compact continuous logics, but also prove that for such logics,
certain nicely defined Banach spaces do have copies of c0 or some
`p. This latter proof essentially uses the Stone-Weierstrass
Theorem, which does not extend nicely to non-compact spaces,
but we were able to find a different proof which did generalize.
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Conclusion

[CI] not only prove that Tsirelson’s space is not explicitly definable
in compact continuous logics, but also prove that for such logics,
certain nicely defined Banach spaces do have copies of c0 or some
`p. This latter proof essentially uses the Stone-Weierstrass
Theorem, which does not extend nicely to non-compact spaces,
but we were able to find a different proof which did generalize.

Just as with the undefinability result, we replaced the compactness
assumption by the assumption of weakly Grothendieck plus the
double ultralimit condition. However, I emphasize that the analysis
part of our proofs is identical to that in [CI].
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Conclusion

[CI] not only prove that Tsirelson’s space is not explicitly definable
in compact continuous logics, but also prove that for such logics,
certain nicely defined Banach spaces do have copies of c0 or some
`p. This latter proof essentially uses the Stone-Weierstrass
Theorem, which does not extend nicely to non-compact spaces,
but we were able to find a different proof which did generalize.

Just as with the undefinability result, we replaced the compactness
assumption by the assumption of weakly Grothendieck plus the
double ultralimit condition. However, I emphasize that the analysis
part of our proofs is identical to that in [CI].

Future work: Exchanging double limits is a popular pastime among
analysts; can our methods be applied in other areas of analysis?
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Appendix: statements of definability and undefinability
theorems

Definition
c00 is the space of sequences of real numbers that are eventually zero.

We introduce the continuous logic formula for pairs of structures used in
[CI]: for norms ‖‖1 and ‖‖2, define

D(‖‖1, ‖‖2) = sup

{
‖x‖1
‖x‖2

: ‖x‖`1 = 1

}
.

Then define

ϕ(‖‖1, ‖‖2) = 1− logD(‖‖1, ‖‖2)

1 + logD(‖‖1, ‖‖2)
. (?)
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Definition
Suppose L is a language for pairs of structures and ϕ is a formula for
pairs of structures. Let C ⊆ Str(L). A function τ : S r

ϕ(C )→ [0, 1] is a
global left ϕ-type over C if there is a κ-sequence {Mα}α<κ ⊆ C , and an
ultrafilter U on κ, such that for every type t ∈ S r

ϕ(C ), say
t = limβ→V rtpϕ,Nβ

, we have

τ(t) = lim
α→U

lim
β→V

ϕ(Mα,Nβ).

We say that τ is explicitly definable if it is continuous. If a left ϕ-type is
given by p = limα→U ltpϕ,Mα

, we say that p is explicitly definable if the
respective τ is continuous.
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Theorem
Let L be a language for pairs of structures, and ϕ a formula for pairs of
structures. Suppose C ⊆ Str(L) is such that S l

ϕ(C ) is weakly
Grothendieck and satisfies the double ultralimit condition. Then the
following are equivalent:

(i) Whenever a left type over C is given by t = limi→U ltpϕ,Mi
, and

{Nj}j<ω ⊆ C is a sequence in C , and V is an ultrafilter on ω, then

lim
i→U

lim
j→V

ϕ(Mi ,Nj) = lim
j→V

lim
i→U

ϕ(Mi ,Nj).

(ii) If τ is a global left ϕ-type over C , then τ is continuous.
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Definition

A structure (c00, ‖‖`1 , ‖‖, e0, e1, . . .) where ‖‖ is an arbitrary norm and
{en}n<ω is the standard vector basis of c00 is called a structure based on
c00.

Definition

Let C be a family of structures which are normed spaces based on c00, ϕ
a formula for a pair of structures, and ‖‖∗ a norm on c00.

(a) If {‖‖i : i < ω} is a family of norms on c00 we say that
{ltpϕ,‖‖i : i < ω} determines ‖‖∗ uniquely if, for every ultrafilter U
on ω, the type t = limi→U ltpϕ,‖‖i is realized, and ‖‖∗ is its unique
realization.

(b) We say that ‖‖∗ is uniquely determined by its ϕ-type over C if there
is a family of norms {‖‖i : i < ω} on c00 in C such that
{ltpϕ,‖‖i : i < ω} determines ‖‖∗ uniquely.
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Proposition

Let L be a language for pairs of structures, C a class of structures
(c00, ‖‖`1 , ‖‖) such that the norm completion of (c00, ‖‖) is a Banach
space including `p or c0, and let ϕ(X ,Y ) be the formula defined by (?)
above. Suppose {(c00, ‖‖`1 , ‖‖i ) : i < ω} is a family of structures in C
such that

‖‖1 ≤ ‖‖2 ≤ · · · ≤ ‖‖n ≤ · · ·

and the ϕ-type t = limi→U ltpϕ,‖‖i is realized by (c00, ‖‖`1 , ‖‖∗) in
Str(L), then {ltpϕ,‖‖i : i < ω} uniquely determines ‖‖∗ over C. In
particular, the Tsirelson norm is uniquely determined by its ϕ-type over C.

We then prove:
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Theorem

Let L be a language for pairs of structures, and C a subclass of the class
of structures (c00, ‖‖`1 , ‖‖) such that the norm completion of (c00, ‖‖) is
a Banach space including some `p or c0, and including the spaces used in
the construction of the Tsirelson space. Let ‖‖T be the Tsirelson norm.
Let ϕ be the formula as in (?) above. If the space S l

ϕ(C) of left ϕ-types
over C is weakly Grothendieck and satisfies the double ultralimit
condition, then ‖‖T is uniquely determined by its left ϕ-type over C and
that left ϕ-type is not explicitly definable over C.

Theorem

Let L be a language for pairs of structures, ϕ the formula defined by (?)
above, and C a subclass of the class of structures based on c00 such that
every closed subspace of a space in C includes a copy of c0 or `p. Assume
that the space of left ϕ-types over C is weakly Grothendieck and satisfies
the double ultralimit condition. If the left ϕ-type of an M ∈ Str(L) is
explicitly definable from C , then M includes a copy of c0 or some `p.
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Appendix II Countable Tightness and the Double Ultralimit
Condition

Lemma

If X is weakly Grothendieck and satisfies the double ultralimit
condition, then a subset A ⊆ Cp(X , [0, 1]) satisfying DULC(A,X )
is relatively compact.

For countably tight spaces, the “if” can be strengthened to “if and
only if”:

Theorem

Let X be countably tight. A subset A of Cp(X , [0, 1]) is relatively
compact in Cp(X , [0, 1]) if and only if DULC(A,X ).
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Let A denote the closure of A in [0, 1]X .

Proof of backward direction.

Suppose A ∩ Cp(X ) is not compact in Cp(X ). Then A ∩ Cp(X ) is
closed but it is not countably compact in Cp(X ), since X is weakly
Grothendieck. Let {fn}n<ω be a subset of A with closure disjoint
from A ∩ Cp(X ). Since A is a compact subset of [0, 1]X , each
ultralimit of the sequence {fn}n<ω exists, and is discontinuous.
Take a non-principal ultrafilter U over ω and let limn→U fn = g ,
where g is discontinuous by assumption. Then there are ε > 0 and
y ∈ X such that y ∈ Y , where

Y = X \ g−1 (g(y)− ε, g(y) + ε) .
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Proof continued.

Since t(X ) = ℵ0, there is some Z ⊆ Y with |Z | = ℵ0 and y ∈ Z .
Suppose Z = {xm}m<ω and for each open neighbourhood U of y ,
let MU = {m < ω : xm ∈ U}. Clearly, the family of all MU is
centred (i.e. all finite subfamilies have non-empty intersections)
and so it can be extended to an ultrafilter V on ω so that

lim
n→U

lim
m→V

fn(xm) = g(y)

since each fn is continuous. On the other hand,

lim
m→V

lim
n→U

fn(xm) = lim
m→V

g(xm)

exists by compactness of [0, 1]. However, by the choice of each xm,
we have |g(y)− g(xm)| > ε and so the ultralimits exist but are
different, a contradiction.
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Proof of forward direction.

For the forward direction, we will apply the lemma above after
verifying its hypotheses. Since X is countably tight, we know X is
weakly Grothendieck. Suppose {xm}m<ω is a sequence in X ,
A ∩ Cp(X ) is compact, and limm→V xm = y . Then for any
sequence {fn}n<ω ⊆ A and ultrafilter U on ω, there is a continuous
function g = limn→U fn. Thus,

lim
n→U

lim
m→V

fn(xm) = lim
n→U

fn(y) = g(y),

and
lim
m→V

lim
n→U

fn(xm) = lim
m→V

g(xm) = g(y).

Note we did not need countable tightness for the forward direction.
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