
COCOAG, SPRING 2025: WEEK 4 QUESTIONS

During “project time”, work on problems 1,2 first. We will discuss (some of) the rest
in class next week
Problem 1: Let R = k[x, y, z, w]/(xy − zw) be the homogeneous coordinate ring of the quadric
surface Q ⊂ P3. Let J = ⟨x, z⟩. Note that V(J) = L ⊂ Q is a line on the quadric Q.

(a) Find a presentation matrix of J .
(b) Compute a free resolution of J over R.
(c) Compute a presentation matrix for J∗ := HomR(J,R).
(d) Find an ideal I ⊂ R such that I is isomorphic to J∗ (up to a degree shift, if you are paying

attention to gradings).
(e) Are I and J R-isomorphic?
(f) What is the geometry of V(I) = M ⊂ Q? (i.e. what is this, how does it relate to L,Q?)

Problem 2: Given presentations for two (finitely generated) R-modules, M , N , consider M⊗RN .

(a) If M and N are free modules, what is a basis of M ⊗R N?
(b) If the presentation matrix of M is a 2 × 3 matrix, and the presentation matrix of N is a

3× 2 matrix, write down the presentation matrix f M ⊗R N (this requires no computation
of syzygies!)

(c) What is the presentation matrix for M ⊗R N in the general case?

Problem 3: Find algorithms using our building blocks to compute:

(a) The annihilator of the module M , ann(M) := {f ∈ R | fM = 0}¿
(b) Use this to help find the annihilators for the Ext modules for the 3 ideals from last time:

⟨c2 − bd, bc − ad, b2 − ac⟩, ⟨bc − ad, c3 − bd2, ac2 − b2d, b3 − a2c⟩, and/or ⟨b2, ab, acd, a2d⟩.
(Check your work with the ann command in Macaulay2.

For the following problem:
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Problem 4: Some universal properties/maps associated to a map of modules Let
φ : B → C be an R-linear map of R-modules. In this problem, we write down some of the key
functions (axioms) which show that the category of R-modules is an Abelian category. In this
problem, you are asked to use our building block functions (syz, modulo, lift) to determine how to
compute these. (These functions can be useful in practice as well).
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(a) (Kernel of a map): The kernel of φ is a pair (kerφ, η), where kerφ is an R-module and
η : kerφ → B is an R-linear map, which satisfies the following universal property: Given
g : A → B where φg = 0, then there exists a (unique) map g′ : A → kerφ saisfying g = ηg′

(see above). Problem: Write two functions. The first, called kernelMap, takes as input an
R-linear map φ, and it returns the map η. The second, called kernelLift takes two maps
g, and φ as above, and returns the R-linear map g′.

(b) (Cokernel of a map): The cokernel of φ is a pair (cokerφ, π), where cokerφ is an
R-module and π : C → cokerφ is an R-linear map, which satisfies the following uni-
versal property: Given g : C → A where gφ = 0, then there exists a (unique) map
g′ : cokerφ → A saisfying g = g′π (see above). Problem: Write two functions. The
first, called cokernelMap, takes as input an R-linear map φ, and it returns the map π.
The second, called cokernelLift takes two maps g, and φ as above, and returns the R-
linear map g′. (Image and coimage) The image of φ is ker cokerφ. The coimage of

φ is coker kerφ. Write a function coimageToImage which takes as input φ, and returns
the natural map µ : coimage(φ) → image(φ). Then show that this is an isomorphism of
R-modules, define the function imageToCoimage which takes φ and returns the inverse of
the isomorphism µ.

Problem 5: Let M = coker(m) be a module, with presentation matrix m. There is a natural
R-map M → M∗∗. If R is a domain, an R-module M is called reflexive if this natural map
M → M∗∗ is an isomorphism. The torsion submodule of M is the kernel of this map.

(a) Theoretically, provide a definition for this natural map.
(b) Find an algorithm (using the building blocks we defined in class, as well as the new functions

created in the last problem) to find a presentation of M∗∗, as well as a matrix representing
this natural map.

(c) Consider the Ext modulesM for the three examples. For each, consider them as R/ann(M)-
modules. Are these reflexive modules? What is their torsion submodule? (All as R/ann(M)
modules)

More on next page!
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Problem 6: Depth and regular sequences Suppose that R is a Noetherian ring, I ⊆ R is an
ideal, and M is a finitely generated R-module such that IM ̸= M . Let f1, . . . , fr ∈ I. Recall that
the ordered sequence (f1, f2, . . . , fr) is called a regular sequence on M if ⟨f1, . . . , fr⟩ ≠ ⟨1⟩, and for
each 1 ≤ i ≤ r, fi is a non-zero divisor of M/⟨f1, . . . , fi−1⟩M . Recall also that the depth of M
with respect to an ideal I denoted depthI(M), is the maximum length of a regular sequence on
M contained in I.

We now restrict to the following case: letR be a local ring, or a positively graded ring k[x1, . . . , xn].
(positively graded: everything has degree at least zero, and only the elements of k have degree 0).
We let m denote the maximal ideal, or the ideal generated by all of the variables, in the graded
case.

If R is positively graded or local, then permutations of a regular sequence are also a regular
sequence, but that is not always true in more general situations. Some special cases:

(a) depthI(R) is called the grade of I. If R is a polynomial ring, a theorem in commutative
algebra shows that this value is the codimension of I (the height of I).

(b) depthM := depthm(M) denotes the length of a maximal regular sequence inside the maximal
ideal m.

For this problem:

(a) Verify the formula: depthI(M) = mini{ExtiR(R/I,M) ̸= 0} (This is true in the general
setting above).

(b) (More open-ended) How do you find a maximal regular sequence? How can you compute
depthI(M)? Can you do better than computing these Ext’s?
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