Graduate Course on Derived algebraic geometry and topologicval modular forms
Description
Derived algebraic geometry, representability of derived moduli functors, virtual fundamental classes, derived group schemes and equivariant cohomology theories, elliptic cohomology, topological modular forms.
Some references:
M. Hopkins. "Topological modular forms, the Witten genus, and the theorem of the cube." Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 554--565, Birkhäuser, Basel, 1995.
B. Toen and G. Vezzosi, "Algebraic Geometry over model categories (a general approach to derived algebraic geometry)". On the archive: math.AG/0110109.
B. Toen. "Higher and derived stacks: a global overview." On the archive: math.AG/0604504.
J. Lurie. "Higher topos theory." Now available on my homepage at http://www.math.harvard.edu/~lurie/.
J. Lurie. "Derived algebraic geometry." (Being rewritten; old version available on my homepage at http://www.math.harvard.edu/~lurie/).
J. Lurie. "A survey of elliptic cohomology." Available on my homepage at http://www.math.harvard.edu/~lurie/).
Schedule
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |
10:00 to 11:00 |
No Title Specified
Jacob Lurie, Harvard University |