Asymptotic Theory of Maximum Likelihood Estimator for Diffusion Model
We derive the asymptotics of the maximum likelihood estimators for diffusion models. The models considered in the paper are very general, including both stationary and nonstationary diffusions. For such a broad class of diffusion models, we establish the consistency and find the limit distributions of the exact maximum likelihood estimator, and also the quasi and approximate maximum likelihood estimators based on various versions of approximated transition densities. Our asymptotics are two dimensional, allowing the sampling interval to decrease as well as the time span of sample to increase. The two dimensional asymptotics provide a unifying framework for the development of statistical theories for the stationary and nonstationary diffusion model. More importantly, they yield the asymptotic expansions that are very useful to analyze the exact, quasi and approximate maximum likelihood estimators of the diffusion models, if the samples are collected at high frequency intervals over modest lengths of sampling horizons as in the case of many practical applications.