Hybrid Formation Control of Multi-Agent Systems with Time Delays
As one of the most significant issues in the distributed coordination of multi-agent systems, formation control has received increased attention in recent years due to its wide applications in satellite formation flying, exploration, surveillance and rescue. The formation control problem aims to design suitable protocols such that a group of agents can reach a desired geometric structure from arbitrary initial positions. This talk discusses the leader-following formation problem of the unmanned aerial vehicle (UAV) swarm by integrating hybrid event-triggered control and pinning mechanism, in order to efficiently reduce control resources consumption and transmission redundancy. Meanwhile, delayed control inputs are implemented for more practical applications and comparisons are made with real-time control; topology switching and strong dynamics nonlinearity are also taken into account. In addition, gyroscopic force and braking force are utilized for maintaining collision-free movements. Sufficient robust formation criteria are derived to guarantee convergence of the corresponding formation error dynamics without exhibiting Zeno behavior. Examples and numerical simulations are provided to illustrate the effectiveness of the proposed approach.