Modeling the temporal architecture of sleep-wake transition dynamics
Sleep and wake states are regulated by the interactions among a number of brainstem and hypothalamic neuronal populations and the expression of their neurotransmitters. Based on different experimental studies, several different structures have been proposed for this sleep-wake regulatory network with particular debate over components involved in rapid-eye movement (REM) sleep regulation. We have developed a mathematical modeling framework that is uniquely suited for investigating the structure and dynamics of proposed sleep-wake regulatory networks. Using this framework, we constructed a sleep-wake regulatory network model based on the reciprocal interaction hypothesis for REM sleep regulation. I will discuss our analysis to determine how the structure of the sleep-wake regulatory network determines sleep-wake behavior and the dynamics of behavioral state transitions. I will also discuss the deterministic and stochastic model properties necessary to generate realistic rat sleep-wake temporal architecture as assessed by both standard summary statistics and survival analysis of bout distributions.