Session 4
Speaker: Girish S. Agarwal (Oklahoma State University)
Title: How Much Quantum Noise is Detrimental to Entanglement
I examine the effect of quantum noise on entanglement. The source of noise could be either an attenuator or even an amplifier which one would presumably use in quantum communication protocols. I present quantitative results on the survival of entanglement
as a result of various types of quantum noise. I consider entanglement for both continuous variables [1] and qubits [2].
1. G.S. Agarwal, S. Chaturvedi, arXiv:0906.2743
2. Sumanta Das, G. S. Agarwal arXiv:0901.2114
-------------------------------------------------------------------------------
Speaker: Ting Yu (Stevens Institute of Technology)
Title: Disentanglement and Control of Qubit Systems
Coherence dynamics of quantum systems is a generic paradigm that has been widely discussed in research fields ranging from atomic and optical physics to condensed matter physics and to quantum information science. In this talk I will present highlights of our recent work on several key issues in entanglement dynamics including evolution of spin entanglement under phonon noise, the sudden death of entanglement, two-body open system entanglement, probing many-body entanglement subject to thermal noise, and entanglement control.
-------------------------------------------------------------------------------
Speaker: Martin J. Stevens (NIST)
Speaker: Measuring High-Order Coherences of Chaotic and Coherent Optical States
Coauthors: Burm Baek, Eric A. Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl K. Berggren, Richard P. Mirin and Sae Woo Nam
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector (SNSPD) in which four independent, single-photon-sensitive elements are interleaved over a single spatial mode of the optical beam. We show the power of this technique by measuring nth-order coherences (n = 2,3,4) both of a chaotic, pseudo-thermal source that exhibits high-order photon bunching (up to n!), and of a coherent state source for which all coherences are ~1. Our results demonstrate that using multiple detector elements to parse an optical beam over dimensions smaller than the minimum diffraction-limited spot size can be equivalent-and in some cases superior-to using multiple beamsplitters and discrete detectors that each sample a replica of the entire mode.
-------------------------------------------------------------------------------
Speaker: Alain Aspect (Groupe d'Optique Atomique)
Title: From Einstein's LichtQuanten to Wheeler's delayed choice experiment: quantum weirdness brought to light.