Shrink-Wrapping trajectories for Linear Programming
Hyperbolic Programming (HP) --minimizing a linear functional over an affine subspace of a finite-dimensional real vector space intersected with the so-called hyperbolicity cone-- is a class of convex optimization problems that contains well-known Linear Programming (LP). In particular, for any LP one can readily provide a sequence of HP relaxations. Based on these hyperbolic relaxations, a new Shrink-Wrapping approach to solve LP has been proposed by Renegar. The resulting Shrink-Wrapping trajectories, in a sense, generalize the notion of central path in interior-point methods. We study the geometry of Shrink-Wrapping trajectories for Linear Programming. In particular, we analyze the geometry of these trajectories in the proximity of the so-called central line, and contrast the behavior of these trajectories with that of the central path for some pathological LP instances.