Rational quartic spectrahedra
Speaker:
Kristian Ranestad, University of Oslo
Date and Time:
Tuesday, October 4, 2016 - 4:15pm to 5:15pm
Location:
Fields Institute, Room 230
Abstract:
Rational quartic spectrahedra in real 3-space are semialgebraic convex subsets of semidefinite 4×4 real symmetric matrices, whose boundary admits a rational parameterization. The Zariski closure in complex projective space of the boundary is a symmetroid. If the symmetroid have only simple double points as singularities, it is irrational, in fact birational to a K3-surface, so rational symmetries are special. Rational quartic symmetroids have a a triple point, an elliptic double point or is singular along a curve. Reporting on common work in progress with Martin Helsøe, I shall give several examples and first results towards a classification.